Answer:
Given the area A of a flat surface and the magnetic flux through the surface
it is possible to calculate the magnitude
.
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux
is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (
). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with
being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

We are told the values of
and B, then we can calculate the magnitude

Q1. Option 2: basketball
Q2: Newton's first law is <span>the </span>law<span> of inertia. </span>An object at rest stays at rest and an object in motion stays in motion.
<span>
</span>
<span>Q3. A basketball sitting on the floor stays there and a basketball rolling on court keeps on rolling.</span>
<span>
</span>
<span>Q4 Second law says acceleration is dependent upon net force and mass of the object.</span>
Q5. Basketball accelerates when a player tries to dunk it with both hands.
<span>Q6. Third law says f<span>or every action, there is an equal and opposite reaction.</span></span>
<span><span>
</span></span>
<span><span>Q7. As a player dribbles, the force the basketball hits the floor with is the same as the force from the floor on the ball. That is why the ball bounces back up in air.</span></span>
<span><span>
</span></span>
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Clarify what you mean by ratios?
Answer:
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.
Explanation:
The corrosion rate is the rate of material remove.The formula for calculating CPR or corrosion penetration rate is

K= constant depends on the system of units used.
W= weight =485 g
D= density =7.9 g/cm³
A = exposed specimen area =100 in² =6.452 cm²
K=534 to give CPR in mpy
K=87.6 to give CPR in mm/yr
mpy


=37.4mpy
mm/yr


=0.952 mm/yr
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.