Answer:

Explanation:
Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

The initial pressure is:

The speed at outlet is:

![v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%28250%5C%2C%5Cfrac%7Bgal%7D%7Bmin%7D%20%29%5Ccdot%20%28%5Cfrac%7B3.785%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%5E%7B3%7D%7D%7B1%5C%2Cgal%7D%20%29%5Ccdot%28%5Cfrac%7B1%5C%2Cmin%7D%7B60%5C%2Cs%7D%20%29%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5B%281.125%5C%2Cin%29%5Ccdot%28%5Cfrac%7B0.0254%5C%2Cm%7D%7B1%5C%2Cin%7D%20%29%5D%5E%7B2%7D%20%7D)

The initial pressure is:


Answer:
geolocation technologies, drones, automated transportation vehicles
Explanation:
Answer:
A tsunami's trough, the low point beneath the wave's crest, often reaches shore first. When it does, it produces a vacuum effect that sucks coastal water seaward and exposes harbor and sea floors. As the tsunami approaches water is drawn back from the beach to effectively help feed the wave. In a tide the wave is so long that this happens slowly, over a few hours.
Explanation:
Answer:
Velocity component in x-direction
.
Explanation:
v=3xy+
y
We know that for incompressible flow


So 

By integrate with respect to x,we will find
+C
So the velocity component in x-direction
.