The car's speed was zero at the beginning of the 12 seconds,
and 18 m/s at the end of it. Since the acceleration was 'uniform'
during that time, the car's average speed was (1/2)(0 + 18) = 9 m/s.
12 seconds at an average speed of 9 m/s ==> (12 x 9) = 108 meters .
==========================================
That's the way I like to brain it out. If you prefer to use the formula,
the first problem you run into is: You need to remember the formula !
The formula is D = 1/2 a T²
Distance = (1/2 acceleration) x (time in seconds)²
Acceleration = (change in speed) / (time for the change)
= (18 m/s) / (12 sec)
= 1.5 m/s² .
Distance = (1/2 x 1.5 m/s²) x (12 sec)²
= (0.75 m/s²) x (144 sec²) = 108 meters .
Rocks within Earth both expand and contract as P waves pass
Explanation:
Rocks within the earth both expands and contracts as P-waves passes through them. P-waves are elastic waves.
- Elastic waves behaves in such a way that they do not cause permanent deformation of rocks.
- They can be said to cause elastic deformation when they travel through rocks.
- They simply temporarily expand and contract the rock within a short period by causing the vibration of particles of the medium.
- After a short while, the rock returns back to its original position as if nothing has happened to it.
- These elastic waves are better called seismic waves.
- P-waves are primary waves that can travel through any medium.
Learn more:
Earthquakes brainly.com/question/11292835
#learnwithBrainly
A proton is held at rest in a uniform electric field. When it is released, the proton will lose its kinetic energy.
Kinetic energy
The energy an object has as a result of motion is known as kinetic energy in physics. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes. The body exerts the same amount of effort when slowing down from its current pace to a condition of rest. Formally, kinetic energy is any term that includes a derivative with respect to time in the Lagrangian of a system.
To learn more about kinetic energy refer here:
brainly.com/question/11301578
#SPJ4
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.