Answer:
The magnitude of the bugs displacement is 3.87 m
Explanation:
An illustrative diagram for the scenario is given in the attachment below.
In the diagram, the bug's displacement is given by x. The diagram shows a right angle triangle with x as the hypotenuse. We can determine x from the Pythagorean theorem which states that " the square of the hypotenuse equals sum of squares of the other two sides". That is
x² = 2.25² + 3.15²
x² = 5.0625 + 9.9225
x² = 14.985
x = √14.985
x = 3.87 m
Hence, the magnitude of the bugs displacement is 3.87 m.
Answer:
Explanation:
The experimenter is rotating on his stool with angular velocity ω ( suppose )
His moment of inertia is I say
We are applying no torque from outside . therefore , the angular momentum will remain the same
Thus angular momentum L = I ω = constant
Thus we can say I₁ ω₁ = I₂ω₂ = constant
here I₁ is the initial moment of inertia and ω₁ is the initial angular velocity
Similarly I₂ is the final moment of inertia and ω₂ is the final angular velocity
When a been bag is dropped on his lap , his moment of inertia increases due to increase in mass
In the above equation, when moment of inertia increases , the angular velocity decreases . So its motion of rotation will decrease .
Speed = 50.4 m/s
Time = 0.25 s
Distance = (speed) x (time) = (50.4 m/s) x (0.25 s) = 12.6 meters.
Water vapour has more kinetic energy.
Hope this helps :)
Answer:
Induced emf, 
Explanation:
We have,
Number of turns in the coil, N = 40
Radius of coil, r = 3 cm = 0.03 m
The field increases from 0 to 0.75 T at a constant rate in a time interval of 225 s.
It is required to find the magnitude of the induced emf in the coil if the field is perpendicular to the plane of the coil. The induced emf is given by :

, is magnetic flux

So, the magnitude of induced emf is
.