Answer:
<em>Hello, The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).</em>
Explanation:
The equation for the velocity of an object thrown upward is the following:
v = v0 + g · t
Where:
v = velocity of the ball.
v0 = initial velocity.
g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).
t = time.
To find the velocity of the ball at t = 0.40 s, we have to replace "t" by 0.40 s in the equation:
v = v0 + g · t
v = 3.0 m/s - 9.8 m/s² · 0.40 s
v = -0.92 m/s
The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).
<em>Hope That Helps!</em>
 
        
                    
             
        
        
        
Answer:
a new moon is quite near the Sun in the sky
Explanation:
 
        
             
        
        
        
Answer:
L = L0 (1 + c T)   where c is the coefficient and T the change in temperature
L = 50 ( 1 + 2.05E-6 * 50) = 50.0051 cm
 
        
             
        
        
        
Answer:
They both rises to same height.
Explanation:
When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.
Here the height is independent on the mass of an object and its only depend on velocity.
Now according to the question, two objects have same velocity but they have different masses.
Therefore, they rises to the same height because  height will not change with mass.
 
        
                    
             
        
        
        
They can either cancel each other or add up to a resultant force with a certain direction and modulus.
Newton's second law states that F=m*a, where F is the resultant force, ie ΣF.