Rub a balloon on a woolen fabric to pick up some electrons, to make the balloon negatively charged, and stick them to a wall, which would be positively charged to make them stick.
Opposites attract and when you stick a negatively charged objects to positively charged objects, they tend to stick together. When you pick up electrons, it increases the number of electrons which will make the object negatively charged.
Note: The first part of the answer is a single sentence. The problem says in a complete sentence, so just in case that you need only one sentence you can take the first part. If you can add in more than a sentence, you can put in more from the second paragraph.
Answer:
conductivity of solution is reduced.
Explanation:
When two oppositely charged electrodes are immersed in a solution, positively charged ions are attracted to the negative electrode and gain electrons. The negatively charged ions are attracted to the positive electrode and release electrons.
Due to the process mentioned above , the negatively charged ions are accumulated at the positive electrode and the positively charged ions are accumulated at the negative electrode . This accumulation prevents further attraction of ions at oppositely charged electrodes because the incoming ions face repulsion from already accumulated ions at electrodes. Further , it creates an emf acting in opposite direction . It reduces the current through the solution. Hence conductivity of solution is reduced.
This would happen later at night or early in the morning.
The reason being land becomes warm and cold quicker than the water because of the heat capacity. So during the day water warms up because of sunlight but at night the land becomes a lot cooler as compared to the water which is still war. So the air over water is significantly warmer than the air over land.
Constant velocity means the netto force = 0, therefore F(gravity) = F(astronaut).
175N divided by 87,5kg = 2.00kg/N
The correct answer is
B It increases.
In fact, the kinetic energy of a moving object is given by

where m is the mass of the object and v is its speed. We see that the kinetic energy is proportional to the mass and proportional to the square of the speed: in this problem, the speed of the object remains the same, while its mass increases, therefore the kinetic energy will increase as well.