Answer
D. move a small magnet back and forth within a section of the coiled wire.
Explanation:
i put that for the test and i got it right
the focal length <span> is much more decent for a concave, and also worse</span><span> for a convex mirror. When the image that is given, distance is good and decent, images are always on the same area of the mirror as the object given , and it is not fake. images distance is </span>never positive <span>, the image is on the oppisite side of the mirror, so the image must be virtual.</span>
I am pretty sure that the only statement which is true for particles of the medium of an earthquake P-wave is being shown in the option : b)vibrate parallel to the wave, forming compressions and rarefactions. As you know, it can be formed in two ways : from alternating compressions and rarefactions or primary wave. I bet you will agree with me.
Using conservation of energy law:-
∑ work in = ∑ work out
and work= force* displacement
so when we wanted to move a 100kg a distance of 1m
we multiplied 100*1 = work out
so work in should be equal to 100*g Joules, where g is the acceleration due to gravity.
so workout = 100*g = 25*g *x (divide both sides by 25*g)
x=4m
by the same way:-
------------------------
work in = 100kg * 2m * g (m/

)= work out
so work out = 25*x*g = 200* g (divide both sides by 25*g)
x=8m
Answer:
A car accelerating to the right
Explanation:
The free-body diagram shows all the forces acting on an object. The length of each arrow is proportional to the magnitude of the force represented by that arrow.
In this free-body diagram, we see that there are 4 forces acting on the object, in 4 different directions. We also see that the two vertical forces are equal so they are balanced, while the force to the rigth is larger than the force to the left: this means that there is a net force to the right, so the object is accelerating to the right.
Therefore, the correct answer is:
A car accelerating to the right