The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724
A 20 L sample of the gas contains 8.3 mol N₂.
According to <em>Avogadro’s Law,</em> if <em>p</em> and <em>T</em> are constant
<em>V</em>₂/<em>V</em>₁ = <em>n</em>₂/<em>n</em>₁
<em>n</em>₂ = <em>n</em>₁ × <em>V</em>₂/<em>V</em>₁
___________
<em>n</em>₁ = 0.5 mol; <em>V</em>₁ = 1.2 L
<em>n</em>₂ = ?; <em>V</em>₂ = 20 L
∴<em>n</em>₂ = 0.5 mol × (20 L/1.2 L) = 8.3 mol
The correct answer would be the last option. A double displacement type of reaction involves the switching of places the cations and anions accordingly. The given reaction is erroneous since in the product side the anions and cations are being paired which would not make sense. The correct reaction should be
4NaBr + Co(SO3)2 yields <span>CoBr4 + 2Na2SO3</span>
Answer:
moles Ar in 20g = 0.500 mole Ar
Explanation:
moles = grams given / formula weight = 20g / 39.948g·mol⁻¹ = 0.500 mole Ar
Answer:
Percentage abundance of 121 Sb is = 57.2 %
Percentage abundance of 123 Sb is = 42.8 %
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope, 121 Sb :
% = x %
Mass = 120.9038 u
For second isotope, 123 Sb:
% = 100 - x
Mass = 122.9042 u
Given, Average Mass = 121.7601 u
Thus,

Solving for x, we get that:
x = 57.2 %
<u>Thus, percentage abundance of 121 Sb is = 57.2 %
</u>
<u>percentage abundance of 123 Sb is = 100 - 57.2 % = 42.8 %</u>