Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
Delta E = Ef - Ei
E = energy , h = plank constant , v = frequency
h= 6.626 * 10 ^-34 j*s , T = 10 ^ 12 , v = 74 * 10 ^12 Hz , Hz = s^-1
E = ( 6.626 * 10^ -34 j*s) ( 74 * 10 ^ 12 s^ -1 ) = 4.90 * 10 ^ -20 J
Delta E = Ef - Ei
-4.90 * 10 ^ -20 J = -2.18 * 10 ^ -18J ( 1/4 ^2 - 1/x ^2)
0.0225 = 0.0625 - ( 1/x ^ 2)
0.225 - 0.0625 = - 1/ x ^ 2
- 0.0400 = - 1/x ^2 = -1 / - 0.0400 = x^2
25 = x^2
x = 5
Given that 1 mole contains 6.02x10^23 molecules, 3.0x10^23 is just around half a mole. Then we check the number of moles for each choice:
A. This is approximately half a mole, since the molar mass of Br2 is 159.8 g/mol.
B. He has a molar mass around 4 g/mol, so this is 1 mole.
C. H2 has a molar mass of 2.02 g/mol, so this is 2 moles.
D. Li has a molar mass of around 6.97 g/mol, so this is around 2 moles.
Therefore the only choice that fits is A. 80 g of Br2.
It is given that the person weighs 62 kg = 62,000 g
Natural abundances in mass percent are:
O = 65%
C = 18%
H = 10%
N = 3.0%
Ca = 1.6%
P = 1.2%
Corresponding weights of the elements are:
O = 65/100 * 62000 g = 40.30 * 10^3 g
C = 18/100 * 62000 g = 11.16 * 10^3 g
H = 10/100 * 62000 g = 62.00 * 10^2 g
N = 3.0/100 * 62000 g = 18.60 * 10^2 g
Ca = 1.6/100 * 62000 g = 9.92 * 10^2 g
P = 1.2/100 * 62000 g = 7.44 * 10^2 g
There are eight protons in an Oxygen's nucleus.