Answer:
ΔG <0 , ΔH > 0 , ΔS > 0 .
Explanation:
From the data given in question , the reaction is a spontaneous process , hence , the value of change in gibbs free energy would be negative , ΔG <0
And , on dissolution process , the temperature of the water decreases , i.e. , it is an endothermic process , i.e. , the change in enthalphy value is positive , ΔH > 0
And , during the process of dissolution , the ammonia salt break does to ions , i.e. , the randomness increases , hence the ΔS > 0
Answer:
Phase changes typically occur when the temperature or pressure of a system is altered. When temperature or pressure increases, molecules interact more with each other. When pressure increases or temperature decreases, it's easier for atoms and molecules to settle into a more rigid structure.
Explanation:
Hope it helps UvU
Talk to them and listen to each other. if they aren’t ready to talk, give them space. once both of you are ready, you can make up and forgive each other. don’t bother them by asking a lot of questions and forcing them to talk to you. and if they’re doing that, tell them you need time to think. just be sure to talk to them, listen, and understand. tell each other both sides of the stories. of course, different situations can require different solutions. so resolve it when it’s time :)
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
Since plants turn sunlight into glucose (sugar) that humans and animals eat... the energy we get from our food comes indirectly from the sunlight.