The intensity of the magnetic force exerted on the wire due to the presence of the magnetic field is given by

where
I is the current in the wire
L is the length of the wire
B is the magnetic field intensity

is the angle between the direction of the wire and the magnetic field
In our problem, L=65 cm=0.65 m, I=0.35 A and B=1.24 T. The force on the wire is F=0.26 N, therefore we can rearrange the equation to find the sine of the angle:

and so, the angle is
Answer:
0.98 g/m
Explanation:
Note: Since Tension and frequency are constant,
Applying,
F₁²M₁ = F₂²M₂............... Equation 1
Where F₁ = Frequency of the G string, F₂ = Frequency of the A string, M₁ = mass density of the G string, M₂ = mass density of the A string.
make M₂ the subject of the equation
M₂ = F₁²M₁/F₂²............... Equation 2
From the question,
Given: F₁ = 196 Hz, M₁ = 0.31 g/m, F₂ = 110 Hz
Substitute these values into equation 2
M₂ = 196²(0.31)/110²
M₂ = 0.98 g/m
Answer:
-1.03 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S. I unit of acceleration is m/s².
Mathematically, acceleration is expressed as
a = (v-u)/t ........................ Equation 1
Where a = acceleration, v = final velocity, u = initial velocity, t = time.
Given: u = 13.60 m/s, v = 7.20 m/s t = 6.2 s.
Substituting into equation 2
a = (7.20-13.60)/6.2
a = -6.4/6.2
a = -1.03 m/s²
Note: a is negative because, the hockey puck is decelerating.
Hence the average acceleration = -1.03 m/s²
Answer:
The combined velocity is 8.61 m/s.
Explanation:
Given that,
The mass of a truck, m = 2800 kg
Initial speed of truck, u = 12 m/s
The mass of a car, m' = 1100 kg
Initial speed of the car, u' = 0
We need to find the combined velocity the moment they stick together. Let it is V. Using the conservation of momentum.

So, the combined velocity is 8.61 m/s.
The glandular epithelial tissues make up the liver.