Answer:
<h2>The answer is 90 kg</h2>
Explanation:
In order to find the mass of the football we use the formula

where
p is the momentum
v is the velocity
We have

We have the final answer as
<h3>90 kg</h3>
Hope this helps you
Answer: a. 667N
b. 665N
c. 54.5N
Explanation:
a) on the surface of the earth
W = mg
W = 68 × 9.81
= 667N
b) at the top of Everest (8848 m above sea level).
W =mg × R²/(R + H)²
W = 667 × [6378²/(6378 + 8.848)²
W = 665N
c) has 2 1/2 times the radius of the earth
W = mg × R²/(R + H)²
W = 667 × R²/(R + 2.5R)²
W = 54.5N
Answer:
<h2>21.6 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 7.2 × 3 = 21.6
We have the final answer as
<h3>21.6 N</h3>
Hope this helps you
<span>EP (potential energy) = mgy -> (59)(9.8)(-5) = -2,891
EP + EK (kinetic energy) = 0; but rearranging it for EK makes it EK = -EP, such that EK = 2891 when plugged in.
EK = 0.5mv^2, but can also be v = sqrt(2EK/m).
Plugging that in for sqrt((2 * 2891)/59), we get 9.9 m/s^2 with respect to significant figures.</span>
We Know, F = m*a
F = 2200 * 3.4
F = 7480 Kg m/s²
So, your final answer is 7480