The formula for wave motion is speed of wave equals frequency times wavelength.v = f lambdarearrangingf = v/lambdaf = 0.6/0.02 = 60/2 = 30Hz, or cycles per second.
Answer:
727.67 km
Explanation:
Sine they have Same distance D
distance = speed * time
D = 5.08t
D = 8.3312(t+55.9)
so
5.08t = 8.3312(t+55.9) t in
3.2512t = 465.71
t = 143.2s
Subtitute t
D=5.08 t
= 5.08 × 143.2
= 727.67km
its B. 60 meters
Explanation:
cause I looked up a calculator and solved it
Answer:
The person with locked legs will experience greater impact force.
Explanation:
Let the two persons be of nearly equal mass (say m)
The final velocity of an object (person) dropped from a height H (here 2 meters) is given by,
(
= acceleration due to gravity)
which can be derived from Newton's equation of motion,

Now, the time taken (say
) for the momentum (
) to change to zero will be more in the case of the person who bends his legs on impact than who keeps his legs locked.
We know that,

Naturally, the person who bends his legs will experience lesser force since
is larger.
Answer:
equilibrium position.
Explanation:
In simple harmonic motion , velocity v(t) is given by,
v(t) = -ω A sin(ωt + φ)
where
ω = angular velocity of the corresponding circular motion
A = amplitude
t = time
φ = the initial angle of the corresponding circular motion when the motion begin.
v (t) get maximized when sin value is maximized , i.e. sin
=1
The particle has maximum speed when it passes through the equilibrium position.