The correct answer is
<span>
force per unit charge.
In fact, the electric field strength is defined as the electric force per unit charge experienced by a positive test charge located in the electric field. In formula:
</span>

where
E is the electric field strength
F is the electric force experienced by the charge
q is the positive test charge.
Answer:
what scenario i dont understand
Explanation:
step by step explenation
Answer:
Maximum amount of heat = 10002151.38J
Explanation:
Workdone by motor in 86.1 minutes I given by:
W = power × time
W= 294 × 86.1×60
W= 1439424 Joules
W= 1.4 ×10^6Joules
The amount of heat extracted is given by:
/QL /= K/W/ = TL/W/ /(TH - TL)
Where TL= freezing compartment temperature
TH = Outside air temperature
/QL /= 271 × 1439424 / (310 - 271)
/QL/ = 390083904/39
/QL/ = 10002151.38 Joules
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
(a) 
The frequency of a wave is given by:

where
v is the wave's speed
is the wavelength
For the red laser light in this problem, we have
(speed of light)

Substituting,

(b) 427.6 nm
The wavelength of the wave in the glass is given by

where
is the original wavelength of the wave in air
n = 1.48 is the refractive index of glass
Substituting into the formula,

(c) 
The speed of the wave in the glass is given by

where
is the original speed of the wave in air
n = 1.48 is the refractive index of glass
Substituting into the formula,
