1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
4 years ago
8

The ingredient weights for making 1 yd (cyd) of concrete by assuming aggregates in SSD state are given below. The volume of air

is 2% of the total concrete volume. Coarse Aggregates: 1,575 lb; Fine Aggregates: 1,100 lb; Cement: 700 lb; Water: 315 lb Given, the BSGssp of both coarse and fine aggregates is 2.4, specific gravity of cement is 3.15 and the density of water is 62.4 lb/ft?. 1 yd = 3 ft. Part 1: After performing a trial batch, it is determined that we need to increase the mix water content from 315 lb to 328.5 lb to correct the slump. For the same ingredients, recalculate all the ingredient weights in SSD state to achieve the concrete with the same compressive strength. Assume the same volume of air. If you state in your solution that the weight of a particular ingredient remains the same before and after the mix redesign, clearly state the reason behind your assumption for full credit. Note: You do NOT need any mix design table for solving this problem. Part 2: If the moisture content of coarse aggregates is -1% (note the minus sign) and the moisture content of fine aggregates is -2% (note the minus sign), determine the batch weights (also called stockpile or stock weights) of all ingredients for the redesigned concrete of Part 1. Part 3: Determine the expected unit weight and yield of the redesigned concrete of Part 1.
Engineering
1 answer:
Pachacha [2.7K]4 years ago
4 0

Answer:

Explanation:

Ans) Given batch weight of each component :

Cement = 700 lb

Water = 315 lb

Coarse aggregate = 1575 lb

Fine aggregate = 1100 lb

Part 1) Amount of water = 328.5 lb

Amount of water is needed to be increased if the aggregates has absorption capacity, To maintain constant water cement ratio, the mixing water is increased because some of the water is absorbed by aggregates.

Amount of water absorbed = 328.5 lb - 315 lb = 13.5 lb

Total amount of aggregates = 1575 + 1100 = 2675 lb

=> % Absorption capacity = 13.5 x 100 / 2675 = 0.5 %

Hence, new amount of Coarse aggregate = (1 - 0.005) x 1575 lb = 1567.125 lb

New amount of fine aggregate = (1 - 0.005) x 1100 = 1094.5 lb

Since, water cement ratio is maintained constant , amount of cement remains unchanged

=> Volume of water = 328.5 / 62.4 = 5.26 ft3

=> Volume of cement = 700 / (3.15 x 62.4) = 3.56 ft3

=> Volume of coarse aggregate = 1567.125 / (2.4 x 62.4) = 10.46 ft3

=> Volume of fine aggregate = 1100 / (2.4 x 62.4) = 7.34 ft3

Volume of air = 2% = 0.02 x 27 = 0.54 ft3

Total concrete volume = 5.26 + 3.56 + 10.46 + 7.34 + 0.54 \approx 27 ft3 = 1 yd3

Hence, calculated amount of each component is correct

Part 2) We know, minus sign indicated that the aggregate will absorb some moisture from concrete, hence mixing water amount needed to be corrected .

=> Amount of water absorbed by coarse aggregate = 0.01 x 1567.125 lb = 15.67 lb

=> Amount of water absorbed by fine aggregate = 0.02 x 1094.50 lb = 21.89 lb

Total amount of water absorbed = 15.67 + 21.89 = 37.56 lb

To maintain same water cement ratio, amount of mixing water is needed to be increased

=> Corrected amount of mixing water = 328.5 lb + 37.56 lb = 366 lb

=> Corrected amount of coarse aggregate = (1 - 0.01) x 1567.125 = 1551.45 lb

=> Corrected amount of fine aggregate = (1 - 0.02) x 1094.5 = 1072.6 lb

Part 3) We know,

Unit weight = Sum of weight of each material / Total volume

=> Sum of weight = 366 + 700 + 1551.45 + 1072.6 = 3690.05 lb

Total volume = 1 yd3 or 27 ft3

=> Expected Unit Weight = 3690.05 lb / 27 ft3 = 136.67 lb/ft3

Also, Concrete Yield = Weight of all components / Unit weight of concrete

=> Yield = 3690.05 / 136.67 = 27 ft3 or 1 yd3

You might be interested in
It is true about Metals and alloys: a)-They are good electrical and thermal conductors b)-They can be used as semi-conductors c)
ycow [4]

Answer:

(d) a and c are correct

Explanation:

METALS : Metal are those materials which has very high ductility, high modulus of elasticity, good thermal and electrical conductivity

for example : iron, gold ,silver, copper

ALLOYS: Alloys are those materials which are made up of combining of two or more than two metals these also have good thermal and electrical conductivity and me liable property

for example ; bronze and brass

so from above discussion it is clear that option (d) will be the correct option

8 0
3 years ago
Read 2 more answers
Hi, any kind of help on these questions will be appreciated.
Zielflug [23.3K]

Answer:

IDK

Explanation:

8 0
3 years ago
Pumped-storage hydroelectricity is a type of hydroelectric energy storage used by electric power systems for load balancing. The
NikAS [45]

Answer:

A) energy loss E = pgQtH

Where p = density in kg/m3

g = gravity acceleration in m/s2

Q = flow rate in m3/s

t = time taken for flow in sec

H = height of flow in m

B) power required to run pump;

P = pgQH

Explanation:

Detailed explanation and calculation is shown in the image below

5 0
3 years ago
What is the focus of 7th grade civics
Jobisdone [24]
C. seems like the best answer. i may be wrong so don’t quote me on that
7 0
3 years ago
Read 2 more answers
Calculate the volume of a hydraulic accumulator capable of delivering 5 liters of oil between 180 and 80 bar, using as a preload
Vinil7 [7]

Answer:

1) V_o = 10 liters

2) V_o = 12.26 liters

Explanation:

For isothermal process n =1

V_o =\frac{\Delta V}{(\frac{p_o}{p_1})^{1/n} -(\frac{p_o}{p_2})^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}

V_o = 10 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.03

actual \ volume = c1\times 10 = 10.3 liters

b) for adiabatic process

n =1.4

volume of hydraulic accumulator is given as

V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}

V_o = 12.26 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.15

actual \volume = c1\times 10 = 11.5 liters

8 0
3 years ago
Other questions:
  • 3. When starting an automatic transmission
    6·1 answer
  • Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exit
    10·1 answer
  • Write a static method named fixSpacing that accepts a Scanner representing a file as a parameter and writes that file's text to
    5·1 answer
  • Consider laminar, fully developed flow in a channel of constant surface temperature Ts. For a given mass flow rate and channel l
    15·1 answer
  • A 860 kΩ resistor has 34 μA of current. What is the supply voltage for this electric circuit?
    13·2 answers
  • A piston-cylinder device contains 0.15 kg of air initially at 2 MPa and 350 °C. The air is first expanded isothermally to 500 kP
    15·1 answer
  • Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select fro
    14·1 answer
  • a digital multimeter is set to read dc volts on the 4 volt scale the meter leads are connected to a 12 volt battery what will th
    14·2 answers
  • Which design activity is part of the design for manufacturability (DFM) methodology?
    10·1 answer
  • What color is a board sternlight
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!