1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
3 years ago
8

The ingredient weights for making 1 yd (cyd) of concrete by assuming aggregates in SSD state are given below. The volume of air

is 2% of the total concrete volume. Coarse Aggregates: 1,575 lb; Fine Aggregates: 1,100 lb; Cement: 700 lb; Water: 315 lb Given, the BSGssp of both coarse and fine aggregates is 2.4, specific gravity of cement is 3.15 and the density of water is 62.4 lb/ft?. 1 yd = 3 ft. Part 1: After performing a trial batch, it is determined that we need to increase the mix water content from 315 lb to 328.5 lb to correct the slump. For the same ingredients, recalculate all the ingredient weights in SSD state to achieve the concrete with the same compressive strength. Assume the same volume of air. If you state in your solution that the weight of a particular ingredient remains the same before and after the mix redesign, clearly state the reason behind your assumption for full credit. Note: You do NOT need any mix design table for solving this problem. Part 2: If the moisture content of coarse aggregates is -1% (note the minus sign) and the moisture content of fine aggregates is -2% (note the minus sign), determine the batch weights (also called stockpile or stock weights) of all ingredients for the redesigned concrete of Part 1. Part 3: Determine the expected unit weight and yield of the redesigned concrete of Part 1.
Engineering
1 answer:
Pachacha [2.7K]3 years ago
4 0

Answer:

Explanation:

Ans) Given batch weight of each component :

Cement = 700 lb

Water = 315 lb

Coarse aggregate = 1575 lb

Fine aggregate = 1100 lb

Part 1) Amount of water = 328.5 lb

Amount of water is needed to be increased if the aggregates has absorption capacity, To maintain constant water cement ratio, the mixing water is increased because some of the water is absorbed by aggregates.

Amount of water absorbed = 328.5 lb - 315 lb = 13.5 lb

Total amount of aggregates = 1575 + 1100 = 2675 lb

=> % Absorption capacity = 13.5 x 100 / 2675 = 0.5 %

Hence, new amount of Coarse aggregate = (1 - 0.005) x 1575 lb = 1567.125 lb

New amount of fine aggregate = (1 - 0.005) x 1100 = 1094.5 lb

Since, water cement ratio is maintained constant , amount of cement remains unchanged

=> Volume of water = 328.5 / 62.4 = 5.26 ft3

=> Volume of cement = 700 / (3.15 x 62.4) = 3.56 ft3

=> Volume of coarse aggregate = 1567.125 / (2.4 x 62.4) = 10.46 ft3

=> Volume of fine aggregate = 1100 / (2.4 x 62.4) = 7.34 ft3

Volume of air = 2% = 0.02 x 27 = 0.54 ft3

Total concrete volume = 5.26 + 3.56 + 10.46 + 7.34 + 0.54 \approx 27 ft3 = 1 yd3

Hence, calculated amount of each component is correct

Part 2) We know, minus sign indicated that the aggregate will absorb some moisture from concrete, hence mixing water amount needed to be corrected .

=> Amount of water absorbed by coarse aggregate = 0.01 x 1567.125 lb = 15.67 lb

=> Amount of water absorbed by fine aggregate = 0.02 x 1094.50 lb = 21.89 lb

Total amount of water absorbed = 15.67 + 21.89 = 37.56 lb

To maintain same water cement ratio, amount of mixing water is needed to be increased

=> Corrected amount of mixing water = 328.5 lb + 37.56 lb = 366 lb

=> Corrected amount of coarse aggregate = (1 - 0.01) x 1567.125 = 1551.45 lb

=> Corrected amount of fine aggregate = (1 - 0.02) x 1094.5 = 1072.6 lb

Part 3) We know,

Unit weight = Sum of weight of each material / Total volume

=> Sum of weight = 366 + 700 + 1551.45 + 1072.6 = 3690.05 lb

Total volume = 1 yd3 or 27 ft3

=> Expected Unit Weight = 3690.05 lb / 27 ft3 = 136.67 lb/ft3

Also, Concrete Yield = Weight of all components / Unit weight of concrete

=> Yield = 3690.05 / 136.67 = 27 ft3 or 1 yd3

You might be interested in
Suppose you are asked to design an office building. Explain what type of drawing you would use and why.
ohaa [14]

Answer:

birds-eye view perspective

Explanation:

If someone asked me to design an office building, I would draw it from a birds-eye view perspective. I would draw it this way so I could map out where everything in the office would go and make sure I have enough space for everything. I would also draw it this way in order to clearly see where everything would go in the office. For instance, cubicles/desks could go in the bottom left corner, while the boss's office could go in the top right. It would be easier to organize and it would be easier for me to look back on when I need to actually design the office later.

(i'm not sure if this is what your question is asking for so i just made my best guess)

7 0
3 years ago
Read 2 more answers
Whats viruses c liver?
PtichkaEL [24]

Answer:

Hepatitis C is a viral infection that causes liver inflammation, sometimes leading to serious liver damage. The hepatitis C virus (HCV) spreads through contaminated blood.

5 0
2 years ago
Read 2 more answers
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
3 years ago
A video inspection snake is use
LekaFEV [45]

Answer:

very good thx

Explanation:

5 0
2 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
Other questions:
  • suppose a wheel with a 15 inch diameter is used to turn a water valve stem with a radius of .95 inches. What is the Mechanical a
    15·1 answer
  • Three single-phase, 10 kVA, 2400/280 V, 60-Hz transformers are connected to form a three-phase, 2400/480 V transformer The equiv
    15·1 answer
  • Consider a process in which a carbon-based fuel is combusted in the presence of 70% excess oxygen (assume that all of the oxygen
    10·1 answer
  • Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surro
    11·1 answer
  • The water behind Hoover Dam in Nevada is 221 m higher than the Colorado River below it. At what rate must water pass through the
    6·1 answer
  • If changing employment what do you need to do? Email your new employer information to the Deptartment of International Graduate
    5·1 answer
  • A hollow, spherical shell with mass 2.00kg rolls without slipping down a slope angled at 38.0?.
    15·1 answer
  • A rigid vessel with a volume of 10 m3 contains a water-vapor mixture at 400 kPa. If the quality is 60 percent, find the mass. Th
    11·1 answer
  • The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c
    9·1 answer
  • Deviations from the engineering drawing cannot be made without the approval of the
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!