Answer:
(A) t = 4s
(B) H = 40m
(C) g = 5m/s²
(D) V = -20m/s
(E) t = 8s
The detailed solution to this problem requires the knowledge of costant linear acceleration motion.xplanation:
The detailed solution to this problem requires the knowledge of costant linear acceleration motion.
Explanation:
The full solution can be found in the attachment below.
To answer part A, we have been given some values of velocities bounding the time jnterval of 1s from which we can calculate the acceleration due to gravity and then the time.
Part B
Requires just using the acceleration due to gravity and the time taken in the equation
H = ut - 1/2gt²
Part C
Has already been calculated in part A
Part D
V = -20m/s because the tennis ball is coming down as the upward direction was assumed positive.
Part E
When the ball retirns to its original position it is the same as it never left and so H = 0m
The calculation can be found in the attachment below.