Answer:
They both describe atoms as being made up of positive and negative matter.
Explanation:
In both Bohr's model and Thomson model, the atom consists of positively-charged matter and negatively-charged matter. However, the structure of the atom in the two models is totally different:
- in Thomson's model, the atom consists of a large sphere of uniform positive charge, and electrons (which are negatively charged) are scattered all around inside this sphere
- In Bohr's model, the atom consists of a small, positively charged nucleus, while the electrons (negatively charged) orbit around the nucleus in precise orbits.
Let
denote the position vector of the ball hit by player A. Then this vector has components

where
is the magnitude of the acceleration due to gravity. Use the vertical component
to find the time at which ball A reaches the ground:

The horizontal position of the ball after 0.49 seconds is

So player B wants to apply a velocity such that the ball travels a distance of about 12 meters from where it is hit. The position vector
of the ball hit by player B has

Again, we solve for the time it takes the ball to reach the ground:

After this time, we expect a horizontal displacement of 12 meters, so that
satisfies


Light travels<span> as a </span>wave<span>. But unlike sound </span>waves<span> or water </span>waves<span>, it does not need any matter or material to carry its energy along. This means that </span>light<span> can </span>travel<span> through a vacuum—a completely airless space.</span>
Answer:
He sees the light as 1c
Explanation:
According to relativity, the speed of light is the same in all inertial frame of reference.
If we were to add the velocities as applicable to a normal moving bodies, the relative speed of the light beam will exceed c which will break relativistic law since nothing can go past the speed of light.