Answer:
time required is 6.72 years
Explanation:
Given data
mass m = 3.20 ✕ 10^7 kg
height h = 2.00 km = 2 × 10^3 m
power p = 2.96 kW =2.96 × 10^3 J/s
to find out
time period
solution
we know work is mass × gravity force × height
and power is work / time
so we say that power = mass gravity force × height / time
now put all value and find time period
power = mass × gravity force × height / time
2.96 × 10^3 = 3.20 ✕ 10^7 × 9.81× 2 × 10^3 / time
time = 62.784 × 10^10 / 2.96 × 10^3
time = 21.21081081 × 10^7 sec
time = 58.91891892 × 10^3 hours
time = 6.72 years
so time required is 6.72 years
Answer:
yes with a lot of time it eventualy could be, but in short term no
Explanation:
science hasnt figured it out yet
Hi there!
The period is given by:

T = Period (sec)
w = angular frequency (rad/sec)
According to the equation for SHM in terms of position:
y(t) = Asin(ωt + φ)
A = Amplitude (m)
ω = angular frequency (rad/sec)
t = time (sec)
φ = phase angle
In this instance, the angular frequency is given as 18π.
Plug this value into the equation for T:

Explanation:
The given data is as follows.
Mass of small bucket (m) = 4 kg
Mass of big bucket (M) = 12 kg
Initial velocity (
) = 0 m/s
Final velocity (
) = ?
Height
= 2 m
and,
= 0 m
Now, according to the law of conservation of energy
starting conditions = final conditions

235.44 =
+ 78.48
= 4.43 m/s
Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.