Answer
correct answer is 3.10
Explanation:
in this question we have to multiply two numbers 1.003 and 3.09.
1.003 has 4 significant digits and 3.09 has 3 significant digits so answer must have 3 significant digits.

Hope it will help you
Answer:
The correctly equation is D) N2+ 3H2 → 2NH3
Explanation:
Both nitrogen and hydrogen are presented in bimolecular form (N2 and H2), on one side and on the other side of the equation we have 2 Nitrogens and 6 Hydrogens (it is balanced)
Answer:
(1) A hot drink cooling to room temperature.
(2) The combustion of natural gas.
Explanation:
The spontaneous process is the process in which there is a release of energy and moves towards lower energy and a more thermodynamically stable energy state. All the natural processes are spontaneous.
There are two processes which are spontaneous in the given question are:
(1) A hot drink cooling to room temperature: In this, there is a decrease in energy and also it is a natural process and we know that all the natural processes are spontaneous.
(2) The combustion of natural gas: The fire is an example of an exothermic reaction. The combustion is a combination of a decrease in energy and an increase in entropy. So, this process occurs spontaneously.
First question (upper left):
1/Req = 1/12 + 1/24 = 1/8
Req = 8 ohms
Voltage is equal through different resistors, and V1 = V2 = 24 V.
Current varies through parallel resistors: I1 = V1/R1 = 24/12 = 2 A. I2 = 24/24 = 1 A.
Second question (middle left):
V1 = V2 = 6 V (parallel circuits)
I1 = 2 A, I2 = 1 A, IT = 2+1 = 3 A.
R1 = V1/I1 = 6/2 = 3 ohms, R2 = 6/1 = 6 ohms, 1/Req = 1/2 + 1/1, Req = 2/3 ohms
Third question (bottom left):
V1 = V2 = 12 V
IT = 3 A, meaning Req = V/It = 12 V/3 A = 4 ohms
1/Req = 1/R1 + 1/R2, 1/4 = 1/12 + 1/R2, R2 = 6 ohms
I1 = V/R1 = 1 A, I2 = V/R2 = 2 A
Fourth question (top right):
1/Req = 1/20 + 1/20, Req = 10 ohms
IT = 4 A, so VT = IT(Req) = 4*10 = 40 V
Parallel circuits, so V1 = V2 = VT = 40 V
Since the resistors are identical, the current is split evenly between both: I1 = I2 = IT/2 = 2 A.
Fifth question (middle right):
1/Req = 1/5 + 1/20 + 1/4, Req = 2 ohms
IT = VT/Req = 40 V/2 ohms = 20 A
V1 = V2 = V3 = 40 V
The current of 20 A will be divided proportionally according to the resistances of 5, 20, and 4, the factors will be 5/(5+20+4), 20/(5+20+4), and 4/(5+20+4), which are 5/29, 20/29, and 4/29.
I1 = 20(5/29) = 100/29 A
I2 = 20(20/29) = 400/29 A
I3 = 20(4/29) = 80/29 A
Sixth question (bottom right):
V2 = 30V is given, but since these are parallel circuits, V1 = VT = 30 V.
Then I1 = V1/R1 = 30 V/10 ohms = 3 A.
I2 = 30 V/15 ohms = 2 A.
IT = 3 + 2 = 5 A
1/Req = 1/10 + 1/15, Req = 6 ohms
Your car is performing a transformation of energy of:
Chemical energy to Mechanical energy
The chemical is the gasoline which is then converted to fire as the car runs thus creating the movement of the car which is mechanical energy.