Answer:
= 17º C
Explanation:
This is a calorimetry problem, where heat is yielded by liquid water, this heat is used first to melt all ice, let's look for the necessary heat (Q1)
Let's reduce the magnitudes to the SI system
Ice m = 80.0 g (1 kg / 1000 g) = 0.080 kg
L = 3.33 105 J / kg
Water M = 860 g = 0.860 kg
= 4186 J / kg ºC
Q₁ = m L
Q₁ = 0.080 3.33 10⁵
Q₁ = 2,664 10⁴ J
Now let's see what this liquid water temperature is when this heat is released
Q = M
ΔT = M
(T₀₁ -
)
Q₁ = Q
= T₀₁ - Q / M ce
= 26.0 - 2,664 10⁴ / (0.860 4186)
= 26.0 - 7.40
= 18.6 ° C
The initial temperature of water that has just melted is T₀₂ = 0ª
The initial temperature of the liquid water is T₀₁= 18.6
m
+ M
= M
T₀₁ - m
T₀₂o2
= (M To1 - m To2) / (m + M)
= (0.860 18.6 - 0.080 0) / (0.080 + 0.860)
= 17º C
gg
Rocks leftover from planet or moon formation.
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:

Answer:ans is b solids
Explanation: this is because molecules in a solid medium re much closer together than those in liquid or gas allowing sound waves to travel quickly through it
Answer:
Explanation:
<u>Properties of a virtual image:</u>
1. Image formed cannot be projected or focused on a screen.
2. The distance of the object to the mirror is the same as the distance from the image to the mirror.
3. The size of the image formed is the same as the size of the object.
4. The image formed is laterally inverted. That is the right becomes left and vice versa.
5. The image is upright.
<u>Properties of a real image:</u>
1. Image formed can be projected on a screen.
2, The distance from the image to the mirror is not the same as the distance from the object to the mirror.
3. The size of the image is not the same as the size of the object.
4. Image formed is upside down.