That first one you have selected (3,-3) works in both equations so it's correct.
good job.
you can do this guess and test method with multiple choice answers. If it works in both equations it is the solution. Otherwise use substitution or elimination to combine the two into one equation in only one variable. Then you can solve for the one variable first and use it to solve for the other.
Answer:
g = 5 m/s square
Explanation:
Weight(W), Mass(m), Gravity(g)
W = mg
1,000N = 200g
g = 1000/200
g = 5 m/s square
A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.
Read more on Brainly.com -
brainly.com/question/18743384#readmore
You're answer is B. P waves are more dynamic and have a great autonomy to be able generate a earthquake.
Answer:
6.44 × 10^10 N/C
Explanation:
Electric field due to the ring on its axis is given by
E = K q r / (r^2 + x^2)^3/2
Where r be the radius of ring and x be the distance of point from the centre of ring and q be the charge on ring.
r = 0.25 m, x = 0.5 m, q = 5 C
K = 9 × 10^9 Nm^2/C^2
E = 9 × 10^9 × 5 × 0.25 / (0.0625 + 0.25)^3/2
E = 6.44 × 10^10 N/C