Answer:
ΔG=ΔG0+RTlnQ where Q is the ratio of concentrations (or activities) of the products divided by the reactants. Under standard conditions Q=1 and ΔG=ΔG0 . Under equilibrium conditions, Q=K and ΔG=0 so ΔG0=−RTlnK . Then calculate the ΔH and ΔS for the reaction and the rest of the procedure is unchanged.
Explanation:
Answer:
Q = 0.061 = Kc
Explanation:
Step 1: Data given
Temperature = 500 °C
Kc=0.061
1.14 mol/L N2
5.52 mol/L H2
3.42 mol/L NH3
Step 2: Calculate Q
Q=[products]/[reactants]=[NH3]²/ [N2][H2]³
If Qc=Kc then the reaction is at equilibrium.
If Qc<Kc then the reaction will shift right to reach equilibrium.
If Qc>Kc then the reaction will shift left to reach equilibrium.
Q = (3.42)² / (1.14 * 5.52³)
Q = 11.6964/191.744
Q = 0.061
Q = Kc the reaction is at equilibrium.
Answer:
A. Zodiac
B. Palingenesis
C. Palabra mysteria
D. Decknamen
The correct answer is D. Decknamen.
Explanation:
Answer:
1.12 × 10⁻⁴ M
Explanation:
Step 1: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 2: Make an ICE chart
We can relate the solubility product constant (Ksp) with the solubility (S) through an ICE chart.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Ksp = 5.61 × 10⁻¹² = [Mg²⁺] × [OH⁻]² = S × (2S)² = 4S³
S = 1.12 × 10⁻⁴ M