Answer:
(a). The work done is 7001 MeV.
(b). The momentum of this proton is
.
Explanation:
Given that,
Speed = 0.993 c
We need to calculate the work done
Using work energy theorem
The work done is equal to the kinetic energy relative to the proton


Put the value into the formula




(b). We need to calculate the momentum of this proton
Using formula of momentum

Put the value into the formula




Hence, (a). The work done is 7001 MeV.
(b). The momentum of this proton is
.
6: Short way: it cannot be 2.5, 3, or 5 because up to 5 seconds it only has positive velocity so it must be moving forwards.
Long Way: Velocity is in m / s, multiply that by time (s) to get m or displacement. From 0->5 you have a triangle under the curve, (1/2)(5)(20) = 50 meters displaced positive, you need to then look when velocity is under the curve and use a similar equation to solve for the area but make the answer negative. Find the point where it equals -50 and that is where it will have returned.
Answer to 6: B
7. I cannot see the problem enough to answer this. Just know if the line is above 0 velocity is positive so it is moving the direction it started, when it goes below 0 velocity is negative so it is moving opposite direction it started.
8. Accelration is change in velocity. Whatever the slope of the velocity graph is acceleration. At t=8 the slope is 0 because it is not going up or down.
Answer to 8: A
Your answer is the ball it's very simple a ball rolling down hill will be the one that makes the most sense.
mass of two students are


distance between them is given as

now gravitational force between them is given as

now plug in all values


so above is the force of gravitation between them