Answer:
The distance is 54.6 m
Explanation:
Given that,
Mass = 2.0 kg
Frictional coefficient = 0.21
Initial velocity = 15 m/s
We need to calculate the acceleration
Using formula of frictional force
We need to calculate the acceleration
We need to calculate the initial velocity
Using equation of motion
Put the value


Hence, The distance will be 54.6 m.
They are a variable that changes as a result of the changes in the manipulated variable
Answer:
1.19cm^3 of glycerine
Explanation:
Let Vo= 150cm^3 for both aluminum and glycerine, using expansion formula:
Volume of spill glycerine = change in volume of glycerine - change in volume of aluminum
Volume of glycerine = coefficient of volume expansion of glycerine * Vo* change in temperature - coefficient of volume expansion of Aluminum*Vo* change temperature
coefficient of volume expansion of aluminum = coefficient of linear expansion of aluminum*3 = 23*10^-6 * 3 = 0.69*10^-4 oC^-1
Change in temperature = 41-23 = 18oC
Volume of glycerine that spill = (5.1*10^-4) - (0.69*10^-4) (150*18) = 4.41*10^-4*2700 = 1.19cm3
Answer:
For example, a wave with a time period of 2 seconds has a frequency of
1 ÷ 2 = 0.5 Hz.
Explanation:
Answer:
<em>The new force is 2/3 of the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:

Factoring out 2/3:

Substituting the original force:

The new force is 2/3 of the original force