1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
3 years ago
6

Calculate the normal force of a 1,200 kg boulder resting on the ground

Physics
2 answers:
Olin [163]3 years ago
4 0

Answer:

The normal force points upward and is 11,760 N

Explanation:

Resting on the ground = upward

1200 * 9.8 = 11, 760

Plz click the Thanks button!

Yours Truly.

Darya [45]3 years ago
3 0

Answer:

11760N

Explanation:If the boulder is at rest and not going up or down we would take the 1200 kg and multiply it by 9.8 because

(sum)F = ma and since a is 0 the equation goes to

Fn - mg= 0 an that simplifies to

Fn=mg

You might be interested in
What is the length x of the side of the triangle below? (Hint: use the cosine function.)
Firlakuza [10]
A because that is the answer
7 0
3 years ago
Describe how a neutral material becomes attracted to a negatively charged object brought near it.
Naddik [55]

Answer:

Electric force

Explanation:

It’s like static stuff

3 0
3 years ago
A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
Oxana [17]

Answer:

A)  I_{total} = 1.44 kg m², B) moment of inertia must increase

Explanation:

The moment of inertia is defined by

     I = ∫ r² dm

For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is

      I = ½ m R²

A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is

    I = I_{cm} + m D²

Let's apply these equations to our case

The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms

      I_{total}=I_{body} + 2 I_{arm}

       I_{body} = ½ M R²

The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body

       M = 7/8 m total

       M = 7/8 64

       M = 56 kg

The mass of the arms is

      m’= 1/8 m total

      m’= 1/8 64

      m’= 8 kg

As it has two arms the mass of each arm is half

     m = ½ m ’

     m = 4 kg

The arms are very thin, we will approximate them as a particle

    I_{arm} = M D²

Let's write the equation

     I_{total} = ½ M R² + 2 (m D²)

Let's calculate

    I_{total} = ½ 56 0.20² + 2 4 0.20²

    I_{total} = 1.12 + 0.32

    I_{total} = 1.44 kg m²

b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase

6 0
4 years ago
A 2.50-m segment of wire carries 1000 A current and feels a 4.00-N repulsive force from a parallel wire 5.00 cm away. What is th
Stolb23 [73]

Answer:

The current is  I_b  =  400 \ A

Explanation:

From the question we are told that

    The  length of the segment is  l  =  2.50  \  m

     The current is  I_a  =  1000 \ A

     The force felt is  F  =  4.0 \  N

        The distance of the second wire is  d =  5.0 \ cm  = 0.05 \  m

Generally the current on the second wire is mathematically represented as

        I_b  =  \frac{2 \pi * r * F }{ l *  \mu_o  *  I_a }

Here  \mu_o is the permeability of free space with value  \mu_o =  4 \pi * 10^{-7} \ N/A^2

=>      I_b  =  \frac{2 * 3.142  *  0.05 *  4 }{ 2.50  *  4\pi *10^{-7}  * 1000 }

=>      I_b  =  400 \ A

4 0
3 years ago
To visit your favorite ice cream shop, you must travel 490 m west on Main Street and then 920 m south on Division Street. Suppos
topjm [15]

Answer:

a) The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) The direction of the average velocity is 61.9° south of west.

c) Your average speed during the trip is 11.7 m/s

Explanation:

Hi there!

a) The average velocity (a.v) is calculated as the displacement divided by the time it took to do such a displacement.

The displacement is calculated as the distance between the initial position and the final position:

Displacement = Δ(x,y) = final position - initial position

Let's consider that your initial position is the origin of our frame of reference and let's also consider that west and south are positive directions (+x and +y respectively). Then the displacement vector will be:

Δ(x,y) = final positon - initial position

Δ(x,y) = (490, 920) m - (0, 0) m = (490, 920) m

The average velocity will be:

a.v = Δ(x,y) / t

a.v = (490, 920) m / 121 s

a.v = (4.05, 7.60) m/s

The magnitude of the average velocity is calculated as follows:

 

The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) To find the direction of the average velocity, we have to use trigonometric rules of right triangles. Notice that the x and y-components of the average velocity (vx and vy) together with the average velocity vector (v), with magnitude 8.61 m/s, form a triangle (see figure).

Also, notice that v is the hypotenuse of the triangle and that vx is the side adjacent to the angle θ while vy is the side opposite to θ.

Using trigonometry, we can calculate the value of the angle θ:

cos θ = adjacent side / hypotenuse

cos θ = vx / v

cos θ = 4.05 m/s / 8.61 m/s

θ = 61.9°

The direction of the average velocity is 61.9° south of west.

c) The average speed (a.s) is calculated as the traveled distance (d) divided by the time it took to cover that distance (t). In total, you traveled (490 m + 920 m) 1410 m in 121 s, then the average speed will be:

a.s = d/t

a.s = 1410 m / 121 s

a.s = 11.7 m/s

Your average speed during the trip is 11.7 m/s

5 0
3 years ago
Other questions:
  • Two compact sources of sound oscillate in phase with a frequency of 100 Hz. At a point 5.00m from one source and 5.85 m from the
    6·1 answer
  • How would you present weight change if earth had twice the mass that it does now
    12·1 answer
  • A glowing electric light bulb placed 15 cm from a concave spherical mirror produces a real image 8.9 from the mirror. the light
    7·1 answer
  • When compounds form, what is one result for the atoms that bonded?
    7·1 answer
  • What is the ocean floor made of?
    15·1 answer
  • Who are people that you can go to for help name three?
    9·2 answers
  • What is the centripetal force necessary to keep a 0.4 kg object rotating in a circular path
    7·1 answer
  • Deonte’s family sees a solar panel display and considers using solar power for their home. Deonte knows that solar energy is a n
    5·1 answer
  • An air-track glider attached to a spring oscillates between the 10 cm mark and the 60 cm mark on the track. The glider completes
    7·1 answer
  • A girl, standing on a bridge, throws a stone vertically downward with an initial velocity of 12.0 m/s, into the river below. if
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!