Answer:
Car H
Explanation:
Frictional force is a resistant force. It is given as:
F = u*m*g
Where u = coefficient of friction
m = mass
g = acceleration due to gravity
From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.
Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.
The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.
So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.
Answer:
constructive interference in which waves strengthen each other
Explanation:
Some definitions:
- Costructive interference occurs when two (or more) waves meet each other in phase, so with same displacement at the same point. In such situation, the two waves strengthen each other, and the amplitude of the resultant wave is the sum of the amplitudes of the individual waves
- Destructive interference occurs when two waves meet each other in anti-phase, so with opposite displacement at the same point. In such situation, the two waves cancel each other out, and the amplitude of the resultant wave is the difference of the amplitudes of the individual waves (which means zero if the two waves are identical)
For light waves interfering with each other, 'white' means costructive interference, while 'black' means destructive interference (because black is absence of colors, so this means that the waves cancel each other out). In this problem, we see that point X, Y and X are white, therefore they are point of constructive interference, where the waves strengthen each other.
Answer:
4.54
Explanation:
X+10X=50
11X=50
X=4.54#
<h2>please follow me...</h2>
When evaporation occurs liquid absorbs heat from the surroundings to get converted to its vapour form as a result, there is an overall decrease in the heat leading to cooling of the liquid.
Hope that this was helpful :)
Answer:
7.59Ns
Explanation:
Given parameters:
Force = 1360N
Time of contact = 5.85 x 10⁻³s
Unknown:
Impulse = ?
Solution:
The impulse of the ball is given as:
Impulse = Force x time
Impulse = 1360 x 5.85 x 10⁻³ = 7.59Ns