Answer:
The answer is "36 grams".
Explanation:
In this question, the weight of the ball is not mentioned but is the weight of the cookies is declared, which is equal to 36 grams, and all the cookies are squeezes into the ball and after that, it calculates the overall weight so, let assume that ball weight is =0 and then the overall weight is:

Answer:
COMPLETE QUESTION
A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?
Explanation:
Given that,
Extension of spring
x = 0.0208m
Mass attached m = 3.39kg
Additional mass to have a frequency f
Let the additional mass be m
Using Hooke's law
F= kx
Where F = W = mg = 3.39 ×9.81
F = 33.26N
Then,
F = kx
k = F/x
k = 33.26/0.0208
k = 1598.84 N/m
The frequency is given as
f = ½π√k/m
Make m subject of formula
f² = ¼π² •(k/m
4π²f² = k/m
Then, m4π²f² = k
So, m = k/(4π²f²)
So, this is the general formula,
Then let use the frequency above
f = 3Hz
m = 1598.84/(4×π²×3²)
m = 4.5 kg
If you do not have to use relative physics but classic physics, this is how you solve it:
Speed of light = c = 3 * 10^5 km/s
Speed of your foe respect to you: 0.259c
Speed of the torpedo respect to you: 0.349c
Speed of the torpedo respect your foe: 0.349c - 0.259c = 0.09c
Conversion to km/s = 0.09 * 3.0 * 10^5 km/s = 27000 km/s
Note that this solution, using classic physics do not take into account time and space dilation.
Answer: 27000 km/s
The colder the more likely it is to become a liquid