Answer:
ρ = 7500 kg/m³
Explanation:
Given that
mass ,m = 12 kg
Displace volume ,V= 1.6 L
We know that
1000 m ³ = 1 L
Therefore V= 0.0016 m ³
When metal piece is fully submerged
We know that
mass = Density x volume

Now by putting the values in the above equation

ρ = 7500 kg/m³
Therefore the density of the metal piece will be 7500 kg/m³.
Answer:
A)
B)
Explanation:
Given that
Force = F
Increase in Kinetic energy = 

we know that
Work done by all the forces =change in the kinetic energy
a)
Lets distance = d
We know work done by force F
W= F .d
F.d=ΔKE


b)
If the force become twice
F' = 2 F
F'.d=ΔKE'
2 F .d = ΔKE' ( F.d =Δ KE)
2ΔKE = ΔKE'

Therefore the final kinetic energy will become the twice if the force become twice.
Ideally, if all the magnetic of one winding cuts the other winding, and there isn't any loss in the transformer core or the resistance of the wire, then the voltage across each winding is proportional to the number of turns in its coil.
If you apply 100 V to a winding of 50 turns, then a winding that yields 20 volts
must be wound with
(20/100) of 50 turns = 10 turns
Answer:
v = 2 v₁ v₂ / (v₁ + v₂)
Explanation:
The body travels the first half of the distance with velocity v₁. The time it takes is:
t₁ = (d/2) / v₁
t₁ = d / (2v₁)
Similarly, the body travels the second half with velocity v₂, so the time is:
t₂ = (d/2) / v₂
t₂ = d / (2v₂)
The average velocity is the total displacement over total time:
v = d / t
v = d / (t₁ + t₂)
v = d / (d / (2v₁) + d / (2v₂))
v = d / (d/2 (1/v₁ + 1/v₂))
v = 2 / (1/v₁ + 1/v₂)
v = 2 / ((v₁ + v₂) / (v₁ v₂))
v = 2 v₁ v₂ / (v₁ + v₂)