Answer:h=19.4 m
Explanation:
Given
mass of automobile 
Initial height of automobile 
Velocity at this instant 
If the car stops somewhere at a height 
Thus conserving total energy we get






Explanation:
B. More mass results in less acceleration.
r = radius of the circle traveled by the particle = 76 cm = 0.76 m
T = time period of revolution for the particle = 4.5 s
w = angular velocity of the particle
angular velocity of the particle is given as
w = 2π/T
inserting the values
w = 2 (3.14)/4.5
w = 1.4 rad/s
a = centripetal acceleration of the particle in the circle
centripetal acceleration is given as
a = r w²
inserting the values
a = (0.76) (1.4)²
a = 1.5 m/s²
Answer:
An electric bell is placed inside a transparent glass jar. The bell can be turned on and off using a switch on the outside of the jar. A vacuum is created inside the jar by sucking out the air. Then the bell is rung using the switch. What will we see and hear?
A.
We’ll see the bell move, but we won’t hear it ring.
B.
We won’t see the bell move, but we’ll hear it ring.
C.
We’ll see the bell move and hear it ring.
D.
We won’t see the bell move or hear it ring.
E.
We’ll see the sound waves exit the vacuum pump.
Explanation:
so, the answer to the question is
A.
We'll see the bell move, but we won’t hear it ring.
Answer: 0.817A
Explanation:
Assuming , that one coulomb per second of negative charge alone flow through a conductor and no positive charges flow. I.e Q=It
It means a current of one A flow in the opposite direction.
This is similar to one coulomb per second of positive charge flowing through and there is no negative charge,
In addition, the one coulomb per second of positive charge flows. This is flowing in the current direction of the previous one. Then, the total current is 2 A. Since 2 coulomb of positive charges flow through one due to real positive charge and another due to the negative charge flowing in opposite direction.The charges cannot cancel each other, because even before the current flow the conductor was neutral.
According to this, the current in the given problem is
[2.7 + 2.4] x 10 ^ 18 * 1.602 x 10^ [-19] C/s
= 0.817 A