The solution for this is:
Power = Energy transferred / Time taken
Energy Transferred in one second ( Power) = mgh/s
= (1.2x10^6)(9.8)(50) = 588000000 J/s
Power = 588000000 W
Or
Power is work done / time
Work done in one second = [ rate of fall of mass]
gh = 1.2* *9.81*50 x 10^6 J/s
= 5.886e+8 W
Answer:
C
Explanation:
If the theory were to be proved you you need to repeat the experiment over and over again so that way you can prove that it is true wuth the same results.
Work done is given by the change in kinetic energy of an object
- The kinetic energy of the shovel, the shrub, and in Robert's movement were changed, therefore, work is done in the given processes,
Reason:
Work is done when the total energy of object is affected by the application of force on the object over a distance
Therefore;
- In option <em>A</em>, pushing the shovel into ground (to dig out the dirt) the requires the application of a force (push) over a distance, (into and out of the ground) therefore work is done
- In option <em>B</em>, picking the shrub up gives it gravitational potential energy, therefore, work is done
- In option <em>C</em>, carrying the shrub to the hole does visible work
- In option <em>D</em>, holding the shrub while lowering it into the hole does work by preventing the shrub from falling randomly
Therefore, <u>work is done in the given processes</u>
Learn more about work-energy theorem here:
brainly.com/question/10063455
A material must readily accept electron flow to be a good conductor of electricity. Electrical conductors are electrical charge carriers with electrons that move with ease from atom to atom when charged with voltage. Examples of good conductors are copper, brass, steel, gold, and aluminum.
<h2>
Answer: 3 - infrared light</h2>
Explanation:
<u>There are certain areas of the Milky Way that cannot be observed using the visible range of the electromagnetic spectrum</u> (this includes blue light and red light). This is because these areas are covered or hidden behind columns of interstellar dust and dark matter.
However, using infrared light and sometimes radio waves, it is possible to observe the galaxy better, because this light manages to pass through all that interstellar dust.