Answer:
Explanation:
To solve this problem, we must understand the relationship between mass of a substance and the number of atoms.
Atoms are the smallest indivisible particles of any matter. A substance can be made up of several number of atoms in their space.
The mass of any substance is a function of the amount of atoms its contains.
The mass of a substance is related in chemistry to the amount of atoms its contains using the parameter called the number of moles.
A mole is the amount of substance that contains the Avogadro's number of particles. This number is 6.02 x 10²³ particles. The particles here can be protons, neutrons, electrons, atoms e.t.c.
Now,
Number of moles = 
Molar mass of copper = 63.6g/mole
Number of moles =
= 0.03mole
Since 1 mole of a substance contains 6.02 x 10²³atoms
0.03 mole of copper will contain 0.03 x 6.02 x 10²³atoms
= 1.89 x 10²² atoms
He needs to add 1.89 x 10²² atoms to make 2g of the sample.
Answer:
Explanation:
Given that:
Pressure = 791 mmHg
Temperature = 20.0°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (20 + 273.15) K = 293.15 K
T = 293.15 K
Volume = 100 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 62.3637 L.mmHg/K.mol
Applying the equation as:
791 mmHg × 1.14 L = n × 62.3637 L.mmHg/K.mol × 293.15 K
⇒n of
produced = 0.0493 moles
According to the reaction:-

1 mole of carbon dioxide is produced 1 mole of calcium carbonate reacts
0.0493 mole of carbon dioxide is produced 0.0493 mole of calcium carbonate reacts
Moles of calcium carbonate reacted = 0.0493 moles
Molar mass of
= 100.0869 g/mol
The formula for the calculation of moles is shown below:
Thus,

Impure sample mass = 5.28 g
Percent mass is percentage by the mass of the compound present in the sample.
The compound that is formed is: MgI2
Best* and are there answer choic
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.