P waves<span> are produced by all earthquakes. They are compression </span>waves<span> that </span>form <span>when rocks break due to pressure in the Earth. S </span>waves<span> are secondary </span>waves<span> that are also created during an earthquake. They travel at a slower speed than the </span>p-waves<span>.
S waves are the waves that come after the earthquake and P waves
</span>
C.
remember
reactants ----> products
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.
distance from the Sun of 2.77 astronomical units or about 414 million km 257 million miles and orbiting period of 4.62 years