Answer:
3.0 moles Al₂O₃
Explanation:
We do not know which of the reactants is the limiting reactant. Therefore, you need to convert both of the given mole values into the product. This can be done using the mole-to-mole ratio made up of the balanced equation coefficients.
4 Al + 3 O₂ -----> 2 Al₂O₃
6.0 moles Al 2 moles Al₂O₃
---------------------- x ------------------------- = 3.0 moles Al₂O₃
4 moles Al
4.0 moles O₂ 2 moles Al₂O₃
---------------------- x ------------------------- = 2.7 moles Al₂O₃
3 moles O₂
As you can see, O₂ produces the smaller amount of product. This means O₂ is the limiting reactant. Remember, the limiting reactant is the reactant which runs out before the other reactant(s) are completely reacted. As such, the actual amount of Al₂O₃ produced is 2.7 moles.
However, since this problem is directly addressing how much Al₂O₃ is produced from Al, the answer you most likely are looking for is 3.0 moles Al₂O₃.
In this compound (Phosgene) the central atom (carbon is Sp² Hybridized).
Sp, Sp² and Sp³ can be calculated very simply by doing three steps,
Step 1:
Assume triple bond and double bond as one bond and assign s or p to it. In this example carbon double bond oxygen is considered once and let suppose it is s. Now we are having our s.
Step 2:
Count lone pair of electron, each lone pair counts for s and p. In this case there is no lone pair of electron on carbon, so not included.
Step 3:
Count single bonds for s and p. As we have already assigned s to the double bond, now one p for one single bond, and other p for the other single bond.
Result:
So, we counted 1 s for double bond, 1 p for one single and other p for second single bond. As a whole we got,
Sp²
Practice:
You can practice for hybridization of Oxygen in this molecule. Oxygen has 2 lone pair of electrons. (Hint: Sp² Hybridization)
Answer:
6.75 moles of CuCl₂ were used
Explanation:
Given data:
Number of moles of AlCl₃ formed = 4.5 mol
Number of moles of CuCl₂ used = ?
Solution:
Chemical equation:
3CuCl₂ + 2Al → 2AlCl₃ + 3Cu
Now we will compare the moles of CuCl₂ and AlCl₃
AlCl₃ : CuCl₂
2 : 3
4.5 : 3/2×4.5 = 6.75
6.75 moles of CuCl₂ were used.
Answer : The freezing point of the solution is, 260.503 K
Solution : Given,
Mass of methanol (solute) = 215 g
Mass of water (solvent) = 1000 g = 1 kg (1 kg = 1000 g)
Freezing depression constant = 
Formula used :

where,
= freezing point of water = 
= freezing point of solution
= freezing point constant
= mass of solute
= mass of solvent
= molar mass of solute
Now put all the given values in the above formula, we get

By rearranging the terms, we get the freezing point of solution.

Therefore, the freezing point of the solution is, 260.503 K
Answer:
Work done on the system is zero , hence no work is done since the process is <u>isochoric.</u> There is no work done if the volume remains unchanged. (Though the temperature rises, work is only accomplished when the volume of the gas changes.)
Explanation:
ISOCHORIC PROCESS - An isochoric process, also known as a constant-volume process, isovolumetric process, or isometric process, is a thermodynamic process in which the volume of the closed system undergoing the process remains constant through the process. The heating or cooling of the contents of a sealed, inelastic container is an example of an isochoric process. The thermodynamic process is the addition or removal of heat, the closed system is established by the isolation of the contents of the container, and the constant-volume condition is imposed by the container's inability to deform. It should be a quasi-static isochoric process in this case.
<u>Hence , the work done in the system is zero.</u>