False, as an object falls its potential energy turns into kinetic energy thus decreasing the potential energy.
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 249 g
volume = final volume of water - initial volume of water
volume = 19 - 15 = 4 mL
We have

We have the final answer as
<h2>62.25 g/mL</h2>
Hope this helps you
Answer:
distance/ kinetic
Explanation:
According to the work energy theorem, the work done by all forces is equal to the change in kinetic energy of the body.
So, As the force is applied in the same direction of the distance traveled,so only the kinetic energy of the body changes as after application of force, the speed of the body changes.
Answer:
Ea = 112500[J]
Eb = 87500[J]
Explanation:
To solve this problem we must use the principle of energy conservation which tells us that the energy of a body plus the work done or applied by the body equals the final energy of a body.
This can be easily visualized by the following equation:

Now we must define the energies at points A & B.
<u>For point A</u>
At point A we only have kinetic energy since it moves at 15 [m/s]
So the kinetic energy
![E_{A}=\frac{1}{2}*m*v_{A}^{2} \\E_{A}=\frac{1}{2} *1000*(15)^{2} \\E_{A}=112500[J]](https://tex.z-dn.net/?f=E_%7BA%7D%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2Av_%7BA%7D%5E%7B2%7D%20%20%5C%5CE_%7BA%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2A1000%2A%2815%29%5E%7B2%7D%20%5C%5CE_%7BA%7D%3D112500%5BJ%5D)
The final kinetic energy can be calculated as follows:
![112500-25000=E_{B}\\E_{B}=87500[J]](https://tex.z-dn.net/?f=112500-25000%3DE_%7BB%7D%5C%5CE_%7BB%7D%3D87500%5BJ%5D)
Elastic collision is when kinetic energy before = kinetic energy after
Ek= 1/2mv^2
total before
Ek=1/2(2)(2.2^2) = 4.84 J
total after
Ek= 1/2(2+4)(v^2) = 3v^2
Before = after
4.84=3v^2 | divide by 3
121/75 = v^2 | square root both sides
v=1.27 m/s