Answer:


Explanation:
During this process the mass
will be considered constant. We start from a radius
and a period
. The final period is
.
Angular momentum <em>L</em> is conserved in this process. We can use the formula
, where I is the momentum of inertia (which for a solid sphere is
) and
is the angular velocity, so we can write the star's angular momentum as:

Since
we have:

Which can be simplified as:

Which means:

Which for our values is:

And we calculate the speed of a point on the equator by dividing the final circumference over the final period:

Answer:
72 J
Explanation:
Total kinetic energy will be tge sum of rotational and translational energy.
Rotational kinetic energy is given by
where I is moment of inertia which is given by
and here m is mass, r is radius. Also,
hence making \omega the subject then
where v is the velocity.
Rotational kinetic energy=
This is same as the formula for translational kinetic energy which is given by 
Therefore, total kinetic energy= 
Substituting m with 2 kg and v with 6 m/s then total energy will be 
Answer:
laa a
Explanation:poque usairea ye aire tienfe luza preopia mkr
The answer is
Ekin = 1/2 * m * v^2
Ekin = 1/2 * 5,4 * 35,2^2
Ekin = 3345,41 j (joule)
Answer:

Explanation:
<u>Dynamics</u>
When a particle of mass m is subject to a net force F, it moves at an acceleration given by

The particle has a mass of m=2.37 Kg and the force is horizontal with a variable magnitude given by

The variable acceleration is calculated by:


The instant velocity is the integral of the acceleration:


Integrating


