Answer:
W = 9.93 10² N
Explanation:
To solve this exercise we must use the concept of density
ρ = m / V
the tabulated density of copper is rho = 8966 kg / m³
let's find the volume of the cylindrical tube
V = A L
V = π (R_ext ² - R_int ²) L
let's calculate
V = π (4² - 2²) 10⁻⁴ 3
V = 1.13 10⁻² m³
m = ρ V
m = 8966 1.13 10⁻²
m = 1.01 10² kg
the weight of the tube
W = mg
W = 1.01 10² 9.8
W = 9.93 10² N
Answer:
low melting point
Ionic compounds have high melting and boiling points. This is because a considerable amount of energy is required to break the strong inter-ionic attraction
Explanation:
Answer:
This is because The energies of atoms are quantized.
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed
To find out the kinetic friction, using the coefficient friction formula.
What is kinetic friction?
A force that acts between moving surfaces is called "kinetic friction." A force acting in opposition to the direction of a moving body on the surface is felt. The two materials' kinetic friction coefficients will determine how much force is applied.
What is coefficient friction?
A measure of the degree of friction between two surfaces is the coefficient of friction. A coefficient of friction is determined by calculating the resistance to motion at the intersection of two surfaces made of the same or different materials.
UK
U-coefficient of friction
K-Kinetic friction
Using UK
450+370-f=m*o
f=820=UK*260*9.8
UK=2.548
820/2.548
UK= 321.8210361
Therefore the coefficient of kinetic friction is 321.8210361
Learn more about Kinetic friction from the given link.
brainly.com/question/14111192
#SPJ4