Answer:
Q = -68.859 kJ
Explanation:
given details
mass
initial pressure P_1 = 104 kPa
Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K
final pressure P_2 = 1068 kPa
Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K
we know that
molecular mass of
R = 8.314/44 = 0.189 kJ/kg K
c_v = 0.657 kJ/kgK
from ideal gas equation
PV =mRT
WORK DONE
w = 586*(0.1033 -0.514)
W =256.76 kJ
INTERNAL ENERGY IS
HEAT TRANSFER
= 187.902 +(-256.46)
Q = -68.859 kJ
Explanation:
Yes Diesel engine have problem of knocking.
We know that knocking is phenomenon in which suddenly large amount of power generates this large amount of power will cause the failure of diesel engine.
Actually when one set of fuel inject inside the cylinder to burn with already compressed air (in general up to 10-15 bar) then this fuel does not burn complete and accumulate inside the cylinder.After that second set of fuel inject inside the cylinder then that one set of fuel burns with second set of fuel and produces large amount of sudden power for engine and causes the breaks in the crank or connecting rod of engine.it leads to damage the engine.
The complete Question is:
Airflow through a long, 0.15-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizontal duct is uninsulated and exposed to air at 35°C in the crawlspace beneath a home, what is the heat gain per unit length of the duct? Evaluate the properties of air at 300 K. For the sides of the duct, use the more accurate Churchill and Chu correlations for laminar flow on vertical plates.
What is the Rayleigh number for free convection on the outer sides of the duct?
What is the free convection heat transfer coefficient on the outer sides of the duct, in W/m2·K?
What is the Rayleigh number for free convection on the top of the duct?
What is the free convection heat transfer coefficient on the top of the duct, in W/m2·K?
What is the free convection heat transfer coefficient on the bottom of the duct, in W/m2·K?
What is the total heat gain to the duct per unit length, in W/m?
Answers:
- 7709251 or 7.709 ×10⁶
- 4.87
- 965073
- 5.931 W/m² K
- 2.868 W/m² K
- 69.498 W/m
Explanation:
Find the given attachments for complete explanation