The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
As we know that total work done by a force is given by


so it is product of force and displacement along same direction
as we can write it as

so it must be the product of force and displacement in same directions so correct answer must be
<u>B. in the same direction as the displacement vector and the motion.</u>
No. it is not good for people to live on Mars.
Answer:
The 16ᵗʰ term of this sequence is 82
Step-by-step explanation:
Here,
First Term = a₁ = 9
Common Difference = (d) = 2
Now, For 16ᵗʰ term, n = 16
<em>aₙ = a + (n - 1)d</em>
a₁₆ = 7 + (16 - 1) × 2
a₁₆ = 7 + 15 × 5
a₁₆ = 7 + 75
a₁₆ = 82
Thus, The 16ᵗʰ term of this sequence is 82
<u>-TheUnknownScientist</u>