Answer:
1) 90.0 mL
2) 11.25 M
3) 0.477 M
4) 144 mL
Explanation:
The main formula that will be used for all these calculations is:
C₁V₁ = C₂V₂
C stands for concentration and V stands for volume and the subscripts 1 and 2 indicate an initial concentration or volume and a final concentration or volume.
For each problem, it's best to start by figuring out what you have and what you need to find. Figure out if you're looking for an initial value or a final value.
1) We need to find the initial volume. So, take what values you have and plug them in and then solve for whatever variable:
5.00 M · V₁ = 500.0mL · 0.900 M - divide by 5.00
C₁ = 90.0 mL
2) This time we're finding the initial concentration:
20.0mL · C₁ = 150.0mL · 1.50 M - divide by 20.0mL
C₂ = 11.25 M
3) Now we're finding the final concentration:
12.00mL · 3.50 M = 88.0mL · C₂ - divide by 88.0mL
C₂ = 0.477 M
4) Finally, we're looking for the final volume:
9.0mL · 8.0 M = 0.50 M · V₂ - divide by 0.50 M
V₂ = 144mL
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
The second one, vocab and definition doesn't add up