1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
3 years ago
15

Trade-offs can be necessary at any point in time during the life cycle of a project. It is quite possible, and probable, for the

criteria for the trade-offs to change over the life cycle of the project. Please also identifies how the relative importance of constraints of time, cost, and performance can change over the life cycle of the project.
Engineering
1 answer:
anastassius [24]3 years ago
7 0

Answer:

According to the Principles of Project management, the three factors which dominate the lifecycle of any project are:

  1. Time;
  2. Cost; and
  3. Performance.

The relationship between the three is usually governed by trade-offs.

Explanation:

In simple term, in executing a project, one must deal with the factors mentioned above.

It is always desirous for a project to be finished within a stipulated time. If the time required is reduced inconsiderably, it will most likely incur more cost and even impact performance.

On the other hand, if the project is cost-sensitive and is executed to a very minimalistic budget, performance will be impacted and it may take a protracted amount of time.

In addition to the above, if the principal decides to change the original design of the project, the performance expected is altered. This will attract additional time as well as cost.

It is possible for any of the above factors to be renegotiated and readjusted at any time during the project. It usually is a trade-off.. that is one for the other.

Cheers!

You might be interested in
Estimate the endurance strength, Se, of a 37.5-mm- diameter rod of AISI 1040 steel having a machined finish and heat-treated to
7nadin3 [17]

Answer:

endurance length is 236.64 MPa

Explanation:

data given:

d = 37.5 mm

Sut = 760MPa

endurance limit is

Se = 0.5 Sut

   = 0.5*760 = 380 MPa

surface factor is

Ka = a*Sut^b

where

Sut is ultimate strength

for AISI 1040 STEEL

a = 4.51, b = -0.265

Ka = 4.51*380^{-0.265}

Ka = 0.93

size factor is given as

Kb =1.29 d^{-0.17}

Kb = 0.669

Se = Sut *Ka*Kb

    = 380*0.669*0.93

Se = 236.64 MPa

therefore endurance length is 236.64 MPa

4 0
3 years ago
Two resistors, A and B, individually connect to a 9V battery. A student notices that resistor A is warmer than resistor B. Which
dybincka [34]

Answer:

Resistor B

Explanation:

Since resistance is the opposition to the flow of current in a circuit,

first let assume the two resistors are connected in parallel to the voltage, recall that when connection is in parallel, the different amount of current pass through the resistors depending on the value with the small resistor having  a lower resistance effect hence higher current will pass through

The energy dissipated in each resistor can be calculated as

E=\frac{1}{2}IR^{2}t.

from the formula we can conclude that the energy value will be higher for the resistor with small resistance value. hence more heating effect which will cause it to be warm.

Also when connected individually the current flow from the voltage source will pass through the resistor which when we calculate the energy dissipated, the resistor with smaller value will be higher because it will draw more current which will in turn lead to a heating effect and cause the resistor to be warm. Hence we can conclude that the resistance B has greatest resistance value.

4 0
3 years ago
A strip ofmetal is originally 1.2m long. Itis stretched in three steps: first to a length of 1.6m, then to 2.2 m, and finally to
andreyandreev [35.5K]

Answer:

strains for the respective cases are

0.287

0.318

0.127

and for the entire process 0.733

Explanation:

The formula for the true strain is given as:

\epsilon =\ln \frac{l}{l_{o}}

Where

\epsilon = True strain

l= length of the member after deformation

l_{o} = original length of the member

<u>Now for the first case we have</u>

l= 1.6m

l_{o} = 1.2m

thus,

\epsilon =\ln \frac{1.6}{1.2}

\epsilon =0.287

<u>similarly for the second case we have</u>

l= 2.2m

l_{o} = 1.6m   (as the length is changing from 1.6m in this case)

thus,

\epsilon =\ln \frac{2.2}{1.6}

\epsilon =0.318

<u>Now for the third case</u>

l= 2.5m

l_{o} = 2.2m

thus,

\epsilon =\ln \frac{2.5}{2.2}

\epsilon =0.127

<u>Now the true strain for the entire process</u>

l=2.5m

l_{o} = 1.2m

thus,

\epsilon =\ln \frac{2.5}{1.2}

\epsilon =0.733

6 0
3 years ago
Explain 4 things you can do with a Combination Square
sergij07 [2.7K]

Answer:

A combination square is a multi-use measuring instrument which is primarily used for ensuring the integrity of a 90° angle, measuring a 45° angle, measuring the center of a circular object, find depth, and simple distance measurements. It can also be used to determine level and plumb using its spirit level vial.

Explanation:

3 0
3 years ago
Insulated Gas Turbine Air enters an adiabatic gas turbine at 1050 K and 1 MPa and leaves at 400 kPa. Kinetic and potential energ
EleoNora [17]

Answer:A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

Explanation:A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

4 0
3 years ago
Other questions:
  • A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
    6·1 answer
  • A vector AP is rotated about the Z-axis by 60 degrees and is subsequently rotated about X-axis by 30 degrees. Give the rotation
    13·1 answer
  • Which of the following has nothing to do with insulating glass? Group of answer choices
    10·2 answers
  • A diesel engine with an engine volume of 4.0 L and an engine speed of 2500 rpm operates on an air–fuel ratio of 18 kg air/kg fue
    6·2 answers
  • Help now please evaluate using the commutative property: 40 (32) (10) (25)
    8·1 answer
  • A reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in a pressure increase from 1 bar to P2 an
    10·1 answer
  • Define;<br>i) Voltage<br>ii) Current<br>iii) Electrical Power<br>iv) Electrical Energy​
    10·1 answer
  • An incremental encoder is rotating at 15 rpm. On the wheel there are 40 holes. How many degrees of rotation would 1 pulse be?
    11·1 answer
  • Derive the expression ε=ln(1+e), where ε is the true strain and e is the engineering strain. Note that this expression is not va
    14·1 answer
  • Determine the dimensions for W if W = P L^3 / (M V^2) where P is a pressure, L is a length, M is a mass, and V is a velocity.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!