<span>7.8x102
x 1.95x10<span>3 this is the answer mate
</span></span>
Answer:
232 J/K
Explanation:
The amount of heat gained by the air = the amount of heat lost by the tea.
q_air = -q_tea
q = -mCΔT
q = -(0.250 kg) (4184 J/kg/ºC) (20.0ºC − 85.0ºC)
q = 68,000 J
The change in entropy is:
dS = dQ/T
Since the room temperature is constant (isothermal):
ΔS = ΔQ/T
Plug in values (remember to use absolute temperature):
ΔS = (68,000 J) / (293 K)
ΔS = 232 J/K
Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force
The part of a river that would have animals with muscular bodies and adaptations that let survive in turbulent water is in the transition zone, the mid-transition zone to be precise.
Water at the source zone possesses a lot of potential energy and as it flows from the upper reaches the potential energy is turned into kinetic energy when the course of the river begins to gradually level out and this translates into increase in velocity. By the time river water reaches the middle of the transition zone, most of the potential energy would have been turned into kinetic energy and thus water velocity would be quite high here.
Animals living here would develop muscles because of constantly fighting against the strong current to avoid being swept downstream.