Answer: a switch can do A, B and E
Explanation:
Answer:
As the particles move further away from their normal position (up towards the wave crest or down towards the trough), they slow down.
Explanation:
This means that some of their kinetic energy has been converted into potential energy – the energy of particles in a wave oscillates between kinetic and potential energy. Hope that this helps you and have a great day :)
the electric force decreases because the distance has an indirect relationship to the force
Explanation:
The electric force between two objects is given by

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the distance between the two objects
As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
Answer:
3.82 Ns
Explanation:
Time varying horizontal Force is given as
F(t) = A t⁴ + B t²
F(t) = 4.50 t⁴ + 8.75 t²
Impulse imparted is given as




