Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
F-free = m*g - F_air = m*a
F_air = 1.2 * m
a= (105 kg * 9.8 m.s^2 - 5*105) / 105 kg
a = 9.3 m/s
Hope this helps
Answer:
Explanation:
In order to answer this problem you have to know the depth of the column, we say R, this information is important because allows you to compute some harmonic of the tube. With this information you can compute the depth of the colum of air, by taking tino account that the new depth is R-L.
To find the fundamental mode you use:

n: mode of the sound
vs: sound speed
L: length of the column of air in the tube.
A) The fundamental mode id obtained for n=1:

B) For the 3rd harmonic you have:

C) For the 2nd harmonic:
