Answer:
See explanation
Explanation:
According to Louis de Broglie, matter has an associated wavelength. He was the first scientist to establish the idea of wave-particle duality or wave- particle paradox.
The display of wavelike properties by objects in the universe is dependent on the magnitude of the of the mass of the body. Small objects have a large associated wavelength and can be described completely by quantum mechanics.
A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 38. m/s has a very small mass and significant associated wavelength hence the system can be completely described by quantum mechanics.
Buffers - mixtures of conjugate acid and conjugate base at ±1 pH unit from pH = pKa. Resistant to changes in pH in response to small additions of H+ or OH-. ... Polyprotic acids - dissociation of each H+ can be treated separately if the pKa values are different
Answer:
C.
The pan will be the same temperature as the stove.
Explanation:
Explanation:
You may not realise it, but you come across aldehydes and ketones many times a day. Take cakes and biscuits, for example. Their golden, caramelised crust is formed thanks to the Mailliard reaction. This is a process that occurs at temperatures above 140° C, when sugars with the carbonyl group in foods react with nucleophilic amino acids to create new and complex flavours and aromas.
Another example is formaldehyde. Correctly known as methanal, it is the most common aldehyde in industry. It has multiple uses, such as in tanning and embalming, or as a fungicide. However, we can also react it with different molecules to make a variety of more useful compounds. These include polymers, adhesives and precursors to explosives. But how do aldehydes and ketones react, and why?You should remember from Aldehydes and Ketones that they both contain the carbonyl functional group , . This is a carbon atom joined to an oxygen atom by a double bond. Let's take a closer look at it.
If we compare the electronegativities of carbon and oxygen, we can see that oxygen is a lot more electronegative than carbon.