1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
6

The coefficient of the restitution of an object is defined as the ratio of its outgoing to incoming speed when the object collid

es with a rigid surface. For an object with a coefficient of 0.72, what fraction of the object's kinetic energy is lost during a single collision?
Physics
1 answer:
IgorLugansk [536]3 years ago
5 0

Answer:

48.16 %

Explanation:

coefficient of restitution = 0.72

let the incoming speed be = u

let the outgoing speed be = v

kinetic energy = 0.5 x mass x x velocity^{2}

  • incoming kinetic energy = 0.5 x m x x u^{2}

     

  •  coefficient of restitution =\frac{v}{u}

       0.72 =\frac{v}{u}

       v = 0.72u

        therefore the outgoing kinetic energy = 0.5 x m x (0.72u)^{2}

        outgoing kinetic energy = 0.5 x m x 0.5184 x u^{2}

        outgoing kinetic energy = 0.5184 (0.5 x m x x u^{2})

recall that 0.5 x m x x u^{2} is our incoming kinetic energy, therefore

outgoing kinetic energy = 0.5184 x (incoming kinetic energy)

from the above we can see that the outgoing kinetic energy is 51.84 % of the incoming kinetic energy.

The energy lost would be 100 - 51.84 = 48.16 %

You might be interested in
Light of wavelength 505 nm passes through a single slit of width 4.32 x 10-5 m. At what angle does the first interference minimu
Nataly_w [17]

Answer:

0.665

Explanation:

I did the work. Just plug everything in from the formula. Look at the lesson manual.

3 0
3 years ago
What is energy and object has due to its motion
jolli1 [7]
The energy stored in motion is called kinetic energy.
3 0
3 years ago
How many normal modes of oscillation or natural frequencies does each if the following have: (
Vadim26 [7]
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
6 0
3 years ago
How do scientists classify species?
serious [3.7K]

Answer:

D. By comparing traits

Explanation:

Because age isn't genetic, as well as names, as well as who discovered, but traits are genetic.  

6 0
3 years ago
Read 2 more answers
series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
andre [41]

Answer:

d=1.84\ mm

Explanation:

<u>Capacitance</u>

A two parallel-plate capacitor has a capacitance of

\displaystyle C=\frac{\epsilon_o A}{d}

where

\epsilon_o=8.85\cdot 10^{-12}\ F/m

A = area of the plates = \pi r^2

d = separation of the plates

\displaystyle d=\frac{\epsilon_o A}{C}=\frac{\epsilon_o \pi r^2}{C}

We need to compute C. We'll use the circuit parameters for that. The reactance of a capacitor is given by

\displaystyle X_c=\frac{1}{wC}

where w is the angular frequency

w=2\pi f=2\pi \cdot 36000=226194.67\ rad/s

Solving for C

\displaystyle C=\frac{1}{wX_c}

The reactance can be found knowing the total impedance of the circuit:

Z^2=R^2+X_c^2

Where R is the resistance, R=15 K\Omega=15000\Omega. Solving for Xc

X_c^2=Z^2-R^2

The magnitude of the impedance is computed as the ratio of the rms voltage and rms current

\displaystyle Z=\frac{V}{I}

The rms current is the peak current Ip divided by \sqrt{2}, thus

\displaystyle Z=\frac{\sqrt{2}V}{I_p}

I_p=0.65\ mA/1000=0.00065\ A

Now collect formulas

\displaystyle X_c^2=Z^2-R^2=\left(\frac{\sqrt{2}V}{I_p}\right)^2-R^2

Or, equivalently

\displaystyle X_c=\sqrt{\frac{2V^2}{I_p^2}-R^2}

\displaystyle X_c=\sqrt{\frac{2\cdot 18^2}{0.00065^2}-15000^2}

X_c=36176.34\ \Omega

The capacitance is now

\displaystyle C=\frac{1}{226194.67\cdot 36176.34}=1.22\cdot 10^{-10}\ F

The radius of the plates is

r=18\ cm/2=9 \ cm = 0.09 \ m

The separation between the plates is

\displaystyle d=\frac{8.85\cdot 10^{-12} \cdot \pi\cdot 0.09^2}{1.22\cdot 10^{-10}}

d=0.00184\ m

\boxed{d=1.84\ mm}

8 0
3 years ago
Other questions:
  • At a distance D from a very long (essentially infinite)uniform line of charge, the elecric field is 1000 N/C. Forthe field stren
    9·2 answers
  • NEED ANSWER ASAP!!!!!!
    6·2 answers
  • A tall flagpole is a harmonic oscillator, flexing back and forth with a steady period. The pole rises from a base that is fixed
    12·1 answer
  • An object is held 24.8 cm from a lens of focal length 16.0 cm. What is the magnification of the image?
    14·1 answer
  • What is the primary force that holds things together on an astronomical scale is________?
    13·1 answer
  • In a television picture tube, electrons strike the screen after being accelerated from rest through a potential difference of 27
    11·1 answer
  • find the coefficient of kinetic friction for a 10 kg box being dragged steadily across the surface with a force of 2.0 Newtons​
    5·1 answer
  • A group of big city tenants were upset about rising rent for their apartments, and decided to play a prank on the Building Manag
    11·1 answer
  • An Abrams tank has a mass of 62,Ō00 kg. If its top speed is 20.0 m/s, what is its momentum at top speed?
    8·1 answer
  • The weight lifter used a force of 980 N to raise the barbell over her head in 5.21 seconds. Approximately how much work did she
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!