I'm pretty sure what you are trying to ask for is radiative energy, light energy, and electronic energy.
Radiative since the microwave is releasing radiation,
Light since there is light inside the microwave,
Electronic since it is plugged in and uses electricity.
You can also use sound, but I don't think every microwave makes sound.
Complete Question
A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates. As it is being inserted,
A :
a force repels the glass out of the capacitor.
B :
a force attracts the glass into the capacitor.
C :
no force acts on the glass.
D :
a net charge appears on the glass.
E :
the glass makes the plates repel each other.
Answer:
The correct option is B
Explanation:
Generally when the glass dielectric is slowly inserted between the plated,
The positive plate of the capacitor will induce a negative charge on the glass while the negative plate of the capacitor will induce a positive charge on glass which a electric field that posses an electric force that will attract the glass
Answer:
constant object, momentum increases directly with speed
Explanation:
whereas kinetic energy increases the square of the velocity due to energy momentum
The correct answer is B.
Let us think of the classical theory first. In the classical theory, light is a wave that gives energy. This energy gradually helps the electron jump to a higher energy level.
In quantum theory, this is wrong; an electron cannot absorb a small amout of energy because there is not close enough state to jump to with that energy; only very specific amounts of energy lead to a change in orbital levels/ absorbance of energy. Also, each pair of energy levels has a specific energy difference that is needed from an electron so that it can move.
Hence, B is correct; all other sentences describe classical models of light-electron interactions
Answer:
D. location
Explanation:
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.
That's why all objects regardless of their mass, shape, and size free fall towards the Earth with an acceleration equal to the acceleration at that location in the absence of air resistance.
According to the gravitational force between two bodies, the force experienced by one body due to the other is independent of its own mass.
The gravitational force is given by equation
F = GMm/r²
If F is the force acting on the smaller body of mass 'm', then
F = ma
Therefore, the equation becomes,
ma = GMm/r²
a = GM/r²
The value of 'a' changes with respect to the value of 'r' such that if 'r' is the radius of the Earth, then the acceleration at a height 'h' from Earth surface is given by
a = GM/(r+h)²
Here it is clear that the acceleration at any point is only the inherent property of the Earth itself.
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.