Answer:
a) 119 g/mol
Explanation:
-We apply the formula for freezing point depression to obtain the molality of the solution:

#We use the molality above to calculate the molar mass:

Hence, the molar mass of the compound is 119 g/mol
By using the ICE table :
initial 0.2 M 0 0
change -X + X +X
Equ (0.2 -X) X X
when Ka = (X) (X) / (0.2-X)
so by substitution:
4.9x10^-10 = X^2 / (0.2-X) by solving this equation for X
∴X ≈ 10^-6
∴[HCN] = 10^-6
and PH = -㏒[H+]
= -㏒ 10^-6
= 6
Great amounts of atomic energy are released when
a _______reaction occurs.
Great amounts of atomic energy
are released when a chemical reaction occurs. The process can be an exothermic reaction
or endothermic reaction depending on the substances involved in the reaction.
The hydrocarbon is used in excess.
<h3><u>Explanation</u>:</h3>
The bromination of an arene is not simple as bromination of an alkane. This is because the carbocation or free radicle formation in benzene is a very energy consuming process. This is why a lewis base like aluminium bromide or ferric bromide is used. The ferric bromide takes in the bromine radicle and forms the brominium cation which helps in the formation of electrophile. Now this electrophile brominium cation attacks the benzene ring and forms a temporary sp3 hybrid carbon intermediate. Then the hydrogen is taken by the FeBr4- forming HBr and regenerating the FeBr3 as well as Aromaticity of the arene species at the same time. Here hydrocarbon is used in excess just to prevent the chances of multiple substitution in the same arene molecule.