There are 1.078 x 10²³ molecules
<h3>Further explanation</h3>
Given
4 dm³ = 4 L Nitrogen gas
Required
Number of molecules
Solution
Assumptions on STP (1 atm, 273 K), 1 mol gas = 22.4 L, so for 4 L :
mol = 4 : 22.4
mol = 0.179
1 mol = 6.02 x 10²³ particles(molecules, atoms)
For 0.179 :
= 0.179 x 6.02 x 10²³
= 1.078 x 10²³
The volume did not change, it remained at 20 ml
<h3>Further explanation</h3>
Given
20 ml a sample gas at STP(273 K, 1 atm)
T₂=546 K
P₂=2 atm
Required
The volume
Solution
Combined gas Law :

Input the value :

The volume does not change because the pressure and temperature are increased by the same ratio as the initial conditions (to 2x)
Fiber is another name for cellulose
Fiber is a part of a plant you can’t digest
Hope this helps
Answer:
The partial pressure of hydrogen gas at equilibrium is 1.26 atm
Explanation:
Let's use the molar fraction to solve this:
Molar fraction = Moles of gas / Total moles
Molar fraction = Gas pressure / Total pressure
Without equilibrium, we can think that the total system pressure is the sum of the partial pressures of each gas.
1 atm N₂ + 2 atm H₂ = 3 atm
Molar fraction for H₂ = 2 atm / 3atm → 0.66
Let's replace the molar fraction in equilibrium
Gas pressure / 1.9 atm = 0.66
Gas pressure = 1.26atm