Answer: please see attached work.
Explanation: please see attached work. Assuming 500 sheets of paper = 20 lb. (typicical value).
Answer:
I think the right answer is option B.
Answer:
Fnet = 0
Explanation:
- Since the block slides across the floor at constant speed, this means that it's not accelerated.
- According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.
- This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:

- In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:

⇒ 169 N + Fn = Fg = 216 N (3)
- This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:
- Fn = 216 N - 169 N = 47 N (4)
The net force on the box parallel to the plane is
∑ F[para] = mg sin(24°) = ma
where mg is the weight of the box, so mg sin(24°) is the magnitude of the component of its weight acting parallel to the surface, and a is the box's acceleration.
Solve for a :
g sin(24°) = a ≈ 3.99 m/s²
The box starts at rest, so after 7.0 s it attains a speed of
(3.99 m/s²) (7.0 s) ≈ 28 m/s
Answer:
<em>D. The acceleration after it leaves the hand is 10 m/s/s downwards
</em>
Explanation:
<u>Vertical Throw
</u>
When an object is thrown upwards, it describes a special type of motion ruled only by gravity.
When the ball is launched, it has its maximum speed upwards. The acceleration of gravity is always the same because it's a constant value near our planet's surface. The object starts to lose speed since the acceleration of gravity is pointed downwards and makes the object stop in the mid-air at its maximum height, where the speed is zero. Then, the object starts to fall and regain speed, this time downwards until it reaches back the launching point at the very same speed it was launched, but in the opposite direction.
The time it takes to reach its maximum height is the same it takes to return to the catching point, 2 seconds later.
With all these concepts in mind, we state that:
<em>D. The acceleration after it leaves the hand is 10 m/s/s downwards </em>
The other options are not correct because:
A. The acceleration is never upwards
B. The acceleration is never 0
C. Both times are equal