Answer:
A. 8600 J
General Formulas and Concepts:
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in J)
- m is mass (in g)
- c is specific heat (in J/g °C)
- ΔT is change in temperature (in °C)
Explanation:
<u>Step 1: Define</u>
[Given] <em>m</em> = 1600 g
[Given] ΔT = 214 °C - 202 °C = 12 °C
[Given] <em>c</em> = 0.450 J/g °C
[Solve] <em>q</em>
<u>Step 2: Find Heat</u>
- Substitute in variables [Specific Heat Formula]: q = (1600 g)(0.450 J/g °C)(12 °C)
- Multiply [Cancel out units]: q = (720 J/°C)(12 °C)
- Multiply [Cancel out units]: q = 8640 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our lowest.</em>
8640 J ≈ 8600 J
Topic: AP Chemistry
Unit: Thermodynamics
One mole of C= 12 grams
two moles of O =32
so one mole of CO^2 is44 grams
.1 moles or 1/10 moles of 44 grams is 4.4 grams
every action of has an opposite and equal reaction so we know that the rifle moved back toward her shoulder because the bullet that was fired out of gun was moving at a very high speed.
Key concepts
Density
Mass
Volume
Concentration
Buoyancy
Water
Answer:
You can do that yourself, but there's a example question below. And, if for example, I just answer your question and you don't even try to answer. it dosent matter.
Explanation:Force=Mass x Acceleration -or- F=ma
where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or acceleration.
m=F/a and a=F/m Example:
Engineers at the Johnson Space Center must determine the net force needed for a rocket to achieve an acceleration of 70 m/s2. If the mass of the rocket is 45,000 kg, how much net force must the rocket develop?
Using Newton's second law, F=ma
F=(45,000 kg)(70 m/s2) = 3,150,000 kg m/s2 F=3,150,000 N Note that the units kg m/s2 and newtons are equivalent; that is, 1 kg m/s2