Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:


Explanation:
From the question we are told that
Mass of ball 
Length of string 
Wind force 
Generally the equation for
is mathematically given as




Max angle =
Generally the equation for max Height
is mathematically given as



Generally the equation for Equilibrium Height
is mathematically given as



It gets larger because
well let me give you an example
so today in class we looked at a lava lamp with wax inside and there was a lightbulb at the bottom.
we watched as the wax floated up because the molecules inside the wax spreads out and makes the wax less dense.
the wax floats up because (which is related to the balloon getting bigger) the wax is getting less dense and the particles get bigger which ALSO makes the wax less dense.
hope this helps and hope you can relate it to your problem! say thanks if I did help AT ALL! :)
Answer:
A maximum
Explanation:
When displacement is maximum, velocity is Zero and vice versa
When displacement is maximum, acceleration is maximum and when it is zero, acc. Is zero
Answer:
2.85 s .
Explanation:
y(t) = y(0) + v₀t + 1/2 gt²
y(t) is vertical displacement , y(0) is initial position , v₀ is initial velocity and t is time required to make vertical displacement and g is acceleration due to gravity.
Here y(0) is zero , v₀ = 14 m/s , g = 9.8 m s⁻² , y(t ) = 0 , as the pumpkin after time t comes back to its initial position, that is ground .
We shall take v₀ as negative as it is in upward direction and g as positive as it acts in downward direction
Put the values in the equation above,
0 = 0 - 14t + 1/2 x 9.8 t²
14 t = 1/2 x 9.8 t²
t = 28 / 9.8
t = 2.85 s .