Answer:
The tangential speed of the ball is 11.213 m/s
Explanation:
The radius is equal:
(ball rotates in a circle)
If the system is in equilibrium, the tension is:
Replacing:
Replacing:
Answer: false
Explanation: the longer the period, the less thef= frequency
The answer is 0.245N.
<h3>What is kinetic energy?</h3>
- A particle or an item that is in motion has a sort of energy called kinetic energy. An item accumulates kinetic energy when work, which involves the transfer of energy, is done on it by exerting a net force.
- Kinetic energy comes in five forms: radiant, thermal, acoustic, electrical, and mechanical.
- The energy of a body in motion, or kinetic energy (KE), is essentially the energy of all moving objects. Along with potential energy, which is the stored energy present in objects at rest, it is one of the two primary types of energy.
- Explain that a moving object's mass and speed are two factors that impact the amount of kinetic energy it will possess.
(b) 0.100
For the block on the left,
∑=
–0.308N+0.245N=(0.250kg)a
a=−0.252 if the force of static friction is not too large.
For the block on the right, ==0.490N. The maximum force of static friction would be larger, so no motion would begin, and the acceleration is zero
To learn more about kinetic energy, refer to:
brainly.com/question/25959744
#SPJ4
Answer:
a) the one with a lower orbit b) the one with a higher orbit
Explanation:
Let's consider orbital mechanics. To get an object in orbit, we need it to fall to earth parallel to the earth's surface. To understand it easily imagine a projectile thrown horizontally further and further away, at one point, the projectile hits the cannon from behind. Considering there is no wind resistance, that would be a projecile in orbit.
In other words, the circular orbits of some objects around a massive body are due to the equality between centrifugal acceleration and gravity acceleration.
.
so the velocity is
where "G" is the gravitational constant, "M" the mass of the massive body and "r" the distance between the object and the center of gravity of mass M. As you can note, if "r" increase, "v" decrease.
The orbital period of any object in orbit is
where "a" is length of semi-major axis (a = r in circular orbits). So if "r" increase, "T" increase.