1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
2 years ago
9

In Anchorage, collisions of a vehicle with a moose are so common that they are referred to with the abbreviationMVC. Suppose a 1

000 kg car slides into a stationary 500 kg moose on a very slippery road, with the moose beingthrown through the windshield (a common MVC result). (a) What percent of the original kinetic energy is lost inthe collision to other forms of energy? A similar danger occurs in Saudi Arabia because of camel–vehiclecollisions (CVC). (b) What percent of the original kinetic energy is lost if the car hits a 300 kg camel? (c)Generally, does the percent loss increase or decrease if the animal mass decreases?
Physics
1 answer:
lara31 [8.8K]2 years ago
8 0

Answer:

Part a)

f = \frac{8}{9}

Part b)

f = \frac{120}{169}

Part c)

So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass

Explanation:

Part a)

Let say the collision between Moose and the car is elastic collision

So here we can use momentum conservation

m_1v_{1i} = m_1v_{1f} + m_2v_{2f}

1000 v_o = 1000 v_{1f} + 500 v_{2f}

also by elastic collision condition we know that

v_{2f} - v_{1f} = v_o

now we have

2v_o = 2v_{1f} + v_o + v_{1f}

now we have

v_{1f} = \frac{v_o}{3}

Now loss in kinetic energy of the car is given as

\Delta K = \frac{1}{2}m(v_o^2 - v_{1f}^2)

\Delta K = \frac{1}{2}m(v_o^2 - \frac{v_o^2}{9})

so fractional loss in energy is given as

f = \frac{\Delta K}{K}

f = \frac{\frac{4}{9}mv_o^2}{\frac{1}{2}mv_o^2}

f = \frac{8}{9}

Part b)

Let say the collision between Camel and the car is elastic collision

So here we can use momentum conservation

m_1v_{1i} = m_1v_{1f} + m_2v_{2f}

1000 v_o = 1000 v_{1f} + 300 v_{2f}

also by elastic collision condition we know that

v_{2f} - v_{1f} = v_o

now we have

10v_o = 10v_{1f} + 3(v_o + v_{1f})

now we have

v_{1f} = \frac{7v_o}{13}

Now loss in kinetic energy of the car is given as

\Delta K = \frac{1}{2}m(v_o^2 - v_{1f}^2)

\Delta K = \frac{1}{2}m(v_o^2 - \frac{49v_o^2}{169})

so fractional loss in energy is given as

f = \frac{\Delta K}{K}

f = \frac{\frac{60}{169}mv_o^2}{\frac{1}{2}mv_o^2}

f = \frac{120}{169}

Part c)

So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass

You might be interested in
An ideal spring with spring constant k is hung from the ceiling. The initial length of the spring, with nothing attached to the
hram777 [196]

The mass m of the object = 5.25 kg

<h3>Further explanation</h3>

Given

k = spring constant = 3.5 N/cm

Δx= 30 cm - 15 cm = 15 cm

Required

the mass m

Solution

F=m.g

Hooke's Law

F = k.Δx

\tt m.g=k.\Delta x\\\\m.10=3.5\times 15\\\\m=5.25~kg

7 0
2 years ago
A runner of mass 80 kg is moving at 8.0 m/s. Calculate her kinetic energy. ​
lana [24]

Answer:

2560J

Explanation:

By definition the kinetic energy can be calculated in the following way:

K = (mv²)/2 = 80kg·(8.0m/s)²/2 = 2560 J

7 0
2 years ago
A 6.99-g bullet is moving horizontally with a velocity of +341 m/s, where the sign + indicates that it is moving to the right (s
Ratling [72]

Answer:

a). 1.218 m/s

b). R=2.8^{-3}

Explanation:

m_{bullet}=6.99g*\frac{1kg}{1000g}=6.99x10^{-3}kg

v_{bullet}=341\frac{m}{s}

Momentum of the motion the first part of the motion have a momentum that is:

P_{1}=m_{bullet}*v_{bullet}

P_{1}=6.99x10^{-3}kg*341\frac{m}{s} \\P_{1}=2.3529

The final momentum is the motion before the action so:

a).

P_{2}=m_{b1}*v_{fbullet}+(m_{b2}+m_{bullet})*v_{f}}

P_{2}=1.202 kg*0.554\frac{m}{s}+(1.523kg+6.99x10^{-3}kg)*v_{f}

P_{1}=P_{2}

2.529=0.665+(1.5299)*v_{f}\\v_{f}=\frac{1.864}{1.5299}\\v_{f}=1.218 \frac{m}{s}

b).

kinetic energy

K=\frac{1}{2}*m*(v)^{2}

Kinetic energy after

Ka=\frac{1}{2}*1.202*(0.554)^{2}+\frac{1}{2}*1.523*(1.218)^{2}\\Ka=1.142 J

Kinetic energy before

Kb=\frac{1}{2}*mb*(vf)^{2}\\Kb=\frac{1}{2}*6.99x10^{-3}kg*(341)^{2}\\Kb=406.4J

Ratio =\frac{Ka}{Kb}

R=\frac{1.14}{406.4}\\R=2.8x10^{-3}

3 0
3 years ago
A force of 2N will stretch a rubber band 0.02m. Assuming that Hooke's Law applies, answer the following: How far will a 1600N fo
denis-greek [22]
Hooke's Law states that the extension is directly proportional to the force applied so:
F/x = constant

F₁/x₁ = F₂/x₂
2 / 0.02 = 1600 / x₂
x₂ = 16 m

Elastic work = 1/2 Fx
= 1/2 * 1600 * 16
= 12.8 kJ
7 0
3 years ago
A car accelerate from a stop to 27 m/sec in 5 seconds. What was the car's acceleration?
Furkat [3]
The acceleration should 5.4 m/s^2
4 0
2 years ago
Other questions:
  • The two major parts of the optical telescope
    10·1 answer
  • one layer of earth's atmosphere is called the stratosphere. At one point above earth's surface the stratosphere extends from an
    14·2 answers
  • Look at the image of this rock formation near the coast of Palau, Italy. Which factors could contribute to a collapse of the led
    14·2 answers
  • A 15,000 N truck starts from rest and moves down a 15∘ hill with the engine providing a 8,000 N force in the direction of the mo
    13·1 answer
  • A Martian rover is descending a hill sloped at 30° with the horizontal. It travels with a constant velocity of 2 meters/second.
    12·2 answers
  • 2. In any energy transformation, energy is _____. A created B conserved C destroyed
    9·1 answer
  • What is Physics? How is Physics used in your everyday life? Give at least two examples and explain your answer. You need at leas
    8·1 answer
  • If you know what a JW is LET ME KNOW and it is a type of ppl
    5·2 answers
  • Name two examples where the cohesive force dominates over the adhesive force and vice versa​
    12·1 answer
  • Activity A:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!