Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
D. The final substance in Beaker A is a mixture and in Beaker B is a pure substance.
Is what? It depends on what your talking about.
Igneous rock that forms from magma that cools slowly within Earth’s crust is likely to have larger crystals and a coarse-grained texture.
Igneous rock that forms from lava that cools quickly on Earth’s surface is known as extrusive igneous rock. Another word for extrusive is volcanic.
Because the sample of igneous rock formed on Earth’s surface, it is extrusive. Because it’s composed of mostly light-colored minerals, it is likely felsic.
Because the sample of igneous rock formed within Earth’s crust, it is intrusive. Because it contains a very high concentration of dark-colored, high-density minerals, it is likely ultramafic.
The fact that gabbro is an igneous rock suggests that it was formed from the cooling and crystallization of magma. The fact that it is intrusive means that it formed within Earth’s crust. The fact that it’s mafic suggests that it contains a high concentration of dark-colored, high-density minerals.
Answer:
Pb2+(aq) + 2Cl–(aq) ----> PbCl2(s)
Explanation:
The net ionic equation shows the main reaction that takes place in a system. Hence, a net ionic equation focusses only on those species that actually participate in the reaction.
For the reaction between Pb(NO3)2 and NH4Cl , the net ionic equation is;
Pb^+(aq) + 2Cl^-(aq) ---> PbCl2(s)