Answer:
t = 5 s
Explanation:
Data:
- Initial Velocity (Vo) = 7 m/s
- Acceleration (a) = 3 m/s²
- Final Velocity (Vf) = 22 m/s
- Time (t) = ?
Use formula:
Replace:
Solve the subtraction of the numerator:
It divides:
How much time did it take the car to reach this final velocity?
It took a time of <u>5 seconds.</u>
The object will sail away in a straight line ... continuing in the same direction it was going when the centripetal force stopped.
Answer:
True The net force must be zero for the acceleration to be zero
Explanation:
In order to analyze the statements of this problem we propose your solution.
First let's look at Newton's first, which stable that every object is at rest or with constant speed unless something takes it out of this state (acceleration)
Now let's look at the second postulate, which says that force is related to the product of the mass of a body and its acceleration.
As a result of these two laws, for a body is a constant velocity the summation force on it must be zero.
Now we can analyze the statements given.
True The net force must be zero for the acceleration to be zero
False. If the force is different from zero, there is acceleration that changes the speeds
False. There may be forces, but the sum of them must be zero
False. If a force acts, the acceleration is different from zero and the speed changes
When spring times comes around you ever be like, "k." If you feel like that every year during spring then there you go
Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V